
“Systems Biology” and biomedical applications

1) Diseases– introduction
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3) Application: The human diseasome
4) Application: Comorbidity 
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6) Inflammation: introduction and applications
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NETWORKS AND CANCER



NEOPLASM

MASS of CELLS
ORIGINATES from ONE SINGLE CELL 
GENETIC ALTERATION WHICH IS TRANSMITTED TO
OTHER CELLS

HISTOLOGY/CYTOLOG: CELLS CAN BE VERY 
SIMILAR OR VERY DIFFERENT FORM THE ORIGIN 
(NORMAL) CELL

FUNCTION: SAME/DYSFUNCTION/LOSS OF 
FUNCTION

GROWTH:     - VARIABILE
- PROGRESSIVE
- AUTONOMOUS
- ATYPICAL



• Benign tumor: when its microscopic and gross
characteristics are considered to be relatively innocent, 
implying that it will remain localized and is amenable to local
surgical removal. 
- Affected patients generally survive. 

TUMORS: BENIGN and MALIGN

• Malignant tumor:  as applied to a neoplasm, implies that the 
lesion can invade and destroy adjacent structures and spread 
to distant sites (metastasize) to cause death. 
- Collectively referred to as cancers (derived from the Latin word 

for “crab”—that is, they adhere to any part that they seize in an 
obstinate manner, similar to a crab’s behavior. 

-Affected patients may not survive



Most frequent causes of 
cancer

• 1. Diet (obesity)
• 2. Smoking
• 3. Alcohol consumption
• 4. Reproductive history (estrogen 

stimulation)
• 5. Infectious agents



The main types of cancer leading to 
overall cancer mortality each year are:

- lung (1.3 million deaths/year)
- stomach (803 000 deaths)
- colorectal (639 000 deaths)
- liver (610 000 deaths)
- breast (519 000 deaths)

The most frequent types of cancer worldwide are:

- Among men - lung, stomach, liver, colorectal, oesophagus and prostate

- Among women - breast, lung, stomach, colorectal and cervical



Key risk factors for cancer that can be avoided are:

-tobacco use - responsible for 1.8 million cancer deaths per 
year (60% of these deaths occur in low- and middle-income 
countries);
-being overweight, obese or physically inactive - together 
responsible for 274 000 cancer deaths per year;
-harmful alcohol use - responsible for 351 000 cancer 
deaths per year;
-sexually transmitted human papilloma virus (HPV) 
infection - responsible for 235 000 cancer deaths per year; and
-occupational carcinogens - responsible for at least 152 000 
cancer deaths per year.

-Cancer prevention is an essential component of all cancer 
control plans because about 30% of all cancer deaths can 
be prevented.

WHO:



More than 30% of cancer could be prevented by 
modifying or avoiding key risk factors, according to a 
2005 study by international cancer collaborators1. 

Risk factors include:

1.tobacco use
2.being overweight or obese
3.low fruit and vegetable intake
4.physical inactivity
5.alcohol use
6.sexually transmitted HPV-infection
7.urban air pollution
8.indoor smoke from household use of solid fuels



Environmental factors potentially leading to DNA changes:

- Lifestyle factors (nutrition, tobacco use, physical activity, etc)
- Naturally occurring exposures (ultraviolet light, radon gas, 
infectious agents, etc.)
- Medical treatments (radiation and medicines including
chemotherapy, hormone drugs, drugs that suppress the 
immune system, etc.)
- Workplace exposures
- Household exposures
- Pollution



Cigarette smoke increases the risk on many types of tumors:

smokers compared with nonsmokers in all cancer
types together (table S2) and in lung squamous,
lung adenocarcinoma, and larynx cancers (table
S2). This finding largely accounts for differences
in total numbers of base substitutions (Table 1).
In nonsmokers, 13.8% of lung cancers showed
many signature 4 mutations (Fig. 2A; >1 mu-
tation per megabase), which may be due to pas-
sive smoking, misreporting of smoking habits,
or annotation errors. Signature 4 mutations
were also detected in cancers of the oral cavity,
pharynx, and esophagus, albeit in much smaller
numbers than in lung and larynx cancers, per-
haps because of reduced exposure to tobacco
smoke or more efficient clearance. Differences
in mutation burden attributed to signature 4 be-
tween smokers and nonsmokers were not observed
in these cancer types (Fig. 1). Signature 4 mu-
tations were found at low levels in cancers of
the liver, an organ not directly exposed to to-
bacco smoke, and were elevated in smokers
versus nonsmokers (Fig. 1).
Signature 4 was not extracted from bladder,

cervical, kidney, or pancreatic cancers, despite
the known risks conferred by smoking and
the presence of many smokers in these series.
Additionally, this mutational signature was not
extracted from cancers of the stomach, colorectum,

and ovary, nor from acute myeloid leukemia (in
the analyzed series, the smoking status of pa-
tients with these cancers was unknown, but it is
likely that many have been smokers). The tis-
sues from which all of these cancer types are
derived are not directly exposed to tobacco smoke.
Simulations indicate that the lack of signature
4 is not due to statistical limitations (supple-
mentary text and fig. S4). The absence of sig-
nature 4 suggests that misreplication of direct
DNA damage due to tobacco smoke constituents
does not contribute substantially to mutation
burden in these cancers, even though DNA ad-
ducts indicative of tobacco-induced DNA dam-
age are present in the tissues from which they
arise (7).
Signatures 2 and 13 are characterized by C>T

and C>G mutations, respectively, at TpC dinu-
cleotides and have been attributed to overactive
DNA editing by APOBEC deaminases (20, 21).
The cause of the overactivity in most cancers
has not been established, although APOBECs are
implicated in the cellular response to the entrance
of foreign DNA, retrotransposon movement, and
local inflammation (22). Signatures 2 and 13
showed more mutations in smokers versus non-
smokers with lung adenocarcinoma (table S2).
Because these signatures are found in many

other cancer types, where they are apparently
unrelated to tobacco smoking, it seems unlikely
that the signature 2 and 13 mutations associated
with smoking in lung adenocarcinoma are direct
consequences of misreplication of DNA damage
induced by tobacco smoke. More plausibly, the
cellular machinery underlying signatures 2 and
13 is activated by tobacco smoke, perhaps as a
result of inflammation arising from the deposi-
tion of particulate matter or by indirect con-
sequences of DNA damage.
Signature 5 is characterized by mutations dis-

tributed across all 96 subtypes of base substi-
tution, with a predominance of T>C and C>T
mutations (Fig. 2B) and evidence of transcrip-
tional strand bias for T>C mutations (18). Signa-
ture 5 is found in all cancer types, including those
unrelated to tobacco smoking, and in most can-
cer samples. It is “clocklike” in that the number
of mutations attributable to this signature cor-
relates with age at the time of diagnosis in many
cancer types (17). Signature 5, together with sig-
nature 1, is thought to contribute to mutation ac-
cumulation in most normal somatic cells and in
the germline (17, 23). The mechanisms underlying
signature 5 are not well understood, although
an enrichment of signature 5 mutations was
found in bladder cancers harboring inactivating
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Table 1. Mutational signatures and cancer types associated with tobacco
smoking. Information about the age-adjusted odds ratios for current male
smokers to develop cancer is taken from (2–4). Odds ratios for small cell lung
cancer, squamous cell lung cancer, and lung adenocarcinoma are for an average
daily dose of more than 30 cigarettes. Odds ratios for cervical and ovarian cancers
are for current female smokers. Detailed information about all mutation types, all
mutational signatures, and DNA methylation is provided in table S2. Nomenclature
for signature identification numbers is consistent with the COSMIC database

(http://cancer.sanger.ac.uk/cosmic/signatures). The numbers of smokers and
nonsmokers are unknown (i.e., not reported in the original studies) for acute
myeloid leukemia, stomach, ovarian, and colorectal cancers. The patterns of all
mutational signatures with elevated mutation burden in smokers are displayed
in Fig. 2B. N/A denotes lack of smoking annotation for a given cancer type.
Asterisks indicate that a signature correlates with pack years smoked in a
cancer type. N.S. reflects cancer types without statistically significant elevation
of mutational signatures. The odds ratio for all cancer types is not provided.

Cancer type
Odds
ratio

Nonsmokers Smokers
Total number of

mutational signatures
found in the cancer type

Signature 4
found in

cancer type

Mutational signatures
with elevated

mutation burden
in smokers

versus nonsmokers
(q < 0.05)

All cancer types ND 1062 2490 26 Y 4, 5*
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Small cell lung cancer 111.3 3 145 6 Y N.S.
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Lung squamous 103.5 7 168 8 Y 4*, 5
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Lung adenocarcinoma 21.9 120 558 7 Y 2*, 4*, 5*, 13*
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Larynx 13.2 6 117 5 Y 4*, 5
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Pharynx 6.6 27 49 5 Y 5*
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Oral cavity 4.2 98 265 5 Y 5*
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Esophagus squamous 3.9 99 193 9 Y 5
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Esophagus adenocarcinoma 3.9 67 175 9 Y N.S.
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Bladder 3.8 111 288 5 N 5*
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Liver 2.9 157 235 19 Y 4*, 5, 16
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Stomach 2.1 472 13 N N/A
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Acute myeloid leukemia 2.0 202 2 N N/A
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Ovary 1.9 458 3 N N/A
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Cervix 1.8 94 74 8 N N.S.
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Kidney 1.7 154 103 6 N 5
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Pancreas 1.6 119 120 11 N N.S.
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..

Colorectal 1.3 559 4 N N/A
. .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... ..
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Definizione di cancerogeno (J & E 
Miller)

Dicesi cancerogeno un agente che, somministrato a un animale 

previamente non trattato, induce, per azione genotossica diretta, 

un incremento statisticamente significativo dell’incidenza di una 

data neoplasia rispetto agli animali di controllo (non esposti 

all’azione dell’agente in questione); ciò indipendentemente dal 

fatto se, nella popolazione animale di riferimento, l’incidenza 

spontanea della neoplasia in oggetto sia alta o bassa.



DIFFERENCE BETWEEN BENIGN AND MALIGNANT TUMORS  
CARATTERISTICHE BENIGNE MALIGNE 

Growth  
velocity 

low mitosis 
percentage  
normal mitosis 

high mitosis 
percentage  
abnormal  

 mitosi normali mitosis  
 normal nucleoli nucleoli 

ingranditi 
Differentiation similar to normal often low or 
 maintainement of 

normal functions 
altered (lost) 
functions  
 

Diffusion encapsulated non 
encapsulated  

 no invasion local invasion  
 no metastasis metastasis 

 



THE BIOLOGY OF TUMOR GROWTH



Tumors:

- Local invasion: progressive infiltration, invasion, and 
destruction of surrounding tissues

- Metastasis: spread of a tumor to sites that are 
physically discontinuous with the primary tumor

- marks a tumor as malignant



METASTASIS 
 

DETACHMENT  
      
MIGRATION: DISSEMINATION 

- SEEDING WITHIN BODY CAVITIES  
- HEMATOGENOUS SPREAD  
- LYMPHATIC SPREAD 
-   

ARREST 
 
IMPLANTATION 
 
GROWTH 
 
FILTER ORGANS (LUNGS, LIVER) 
PREFFERENTIAL ORGANS (Es: Prostate carcinima gives bone 
metastasis) 



Metastatic cascade

221Hallmarks of Cancer

epithelial cancers, either by mutational inactivation of 
E-cadherin genes, activation of β-catenin genes, or inap-
propriate expression of the SNAIL and TWIST transcrip-
tion factors, which suppress E-cadherin expression.

• Local degradation of the basement membrane and interstitial
connective tissue. Tumor cells may either secrete proteo-
lytic enzymes themselves or induce stromal cells (e.g., 
fibroblasts and inflammatory cells) to elaborate prote-
ases. Multiple different proteases, such as matrix metal-
loproteinases (MMPs), cathepsin D, and urokinase 

Fig. 6.27 The metastatic cascade: The sequential steps involved in the 
hematogenous spread of a tumor. 
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Fig. 6.28 Sequence of events in the invasion of epithelial basement mem-
branes by tumor cells. Tumor cells detach from each other because of 
reduced adhesiveness and attract inflammatory cells. Proteases secreted 
from tumor cells and inflammatory cells degrade the basement membrane. 
Binding of tumor cells to proteolytically generated binding sites and tumor 
cell migration follow. 
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plasminogen activator, have been implicated in tumor 
cell invasion. MMPs regulate tumor invasion not only 
by remodeling insoluble components of the basement 
membrane and interstitial matrix but also by releasing 
ECM-sequestered growth factors, which have chemo-
tactic, angiogenic, and growth-promoting effects. For 
example, MMP-9 is a gelatinase that cleaves type IV 
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• Amplification:
– c-myc (adenocr, sarcomas)
– c-erbB2   (adenocr.)
– N-myc (adenocr., neuro-end. tumors)
– c-erbB-1  (cr.  with squamous cells)

• Mutations:
– N-ras      (AML)
– K-ras       (Adenocr.)
– TP53

• Gene rearrangemens
- fusion genes
- overexpression

• Deletions
• Chromosomal translocation

– c-myc (B-cell lymphoma)
– c-abl (CML)

GENETIC ALTERATIONS IN 
CANCER



CANCER GENES 
 
ALTERATION OF GENES THAT IS "FIXED" IN THE DNA AND 

TRANSMITTED TO DAUGHTER CELLS  
 
1) GENES THAT POSITIVELY REGULATE PROLIFERATION: 
 PROTOONCOGENES    ONCOGENES 
MECHANISM: MUTATIONS, GENIC FUSION, AMPLIFICATION 
 
2) GENES THAT NEGATIVELY REGULATE PROLIFERATION: 
 ONCOSUPPRESSOR GENES 
MECHANISM: GENE INACTIVATION of both alleles (mutation, 
deletion, etc) 
 
 
 
 

• Proto-oncogenes: normal cellular genes whose products promote cell proliferation 
• Oncogenes: mutant or overexpressed versions of proto- oncogenes that function 
autonomously without a requirement for normal growth-promoting signals 



• Classe I: Growth factors (sis) 
• Classe II: Receptors for growth factors

(erbB, fms, trk) 
• Classe III: Signal treansduction factors

(src, ras, abl, raf, gsp) 
• Classe IV: Nuclear transcription factors

(jun, fos, myc) 

ONCOGENES





C H A P T E R  6  Neoplasia206

of signaling pathZays doZnstreaP of groZth factor 
receptors. The signaling proteins that couple growth factor 
receptors to their nuclear targets are activated by ligand 
binding to growth factor receptors. The signals are trasn-
mitted to the nucleus through various signal transduction 
molecules. Two important oncoproteins in the category of 
signaling molecules are RAS and ABL. Each of these is 
discussed brieÁy next.

RAS
5A6 is the Post coPPonly Putated oncogene in huPan 
tuPors. Approximately 30� of all human tumors contain 
mutated 5$S genes, and the freTuency is even higher in 
some specific cancers (e.g., pancreatic adenocarcinoma). 
RAS is a member of a family of small G proteins that bind 
guanosine nucleotides (guanosine triphosphate [GTP] and 
guanosine diphosphate [GDP]). Signaling by RAS involves 
the following seTuential steps:
� 1ormall\, 5$S Áips back and Iorth betZeen an excited signal�

transmitting state and a Tuiescent state� RAS is inactive
when bound to GDP; stimulation of cells by growth
factors such as EGF and PDGF leads to exchange of
GDP for GTP and subseTuent conformational changes

Growth Factors
Cancers Pay secrete their oZn groZth factors or induce 
stroPal cells to produce groZth factors in the tuPor 
PicroenvironPent. Most soluble growth factors are made 
by one cell type and act on a neighboring cell to stimulate 
proliferation (paracrine action). Normally, cells that 
produce the growth factor do not express the cognate 
receptor, preventing the formation of positive feedback 
loops within the same cell. This ´ruleµ may be broken by 
cancer cells in several different ways.
� Some cancer cells acTuire growth self-sufficiency by

acTuiring the ability to synthesize the same growth
factors to which they are responsive. For example, many
glioblastomas secrete platelet-derived growth factor
(PDGF) and express the PDGF receptor, and many sar-
comas make both transforming growth factor-α (TGF-α)
and its receptor. Similar autocrine loops are fairly
common in many types of cancer.

� Another mechanism by which cancer cells acTuire
growth self-sufficiency is by interaction with stroma. In
some cases, tumor cells send signals to activate normal
cells in the supporting stroma, which in turn produce
growth factors that promote tumor growth.

Growth Factor Receptors
The next group in the seTuence of signal transduction is 
growth factor receptors. Some growth factor receptors 
have an intrinsic tyrosine kinase activity that is activated 
by growth factor binding, while others signal by stimulat-
ing the activity of downstream proteins. 0any of the 
Pyriad groZth factor receptors function as oncoproteins 
Zhen they are Putated or if they overe[pressed. The best-
documented examples of overexpression involve the epi-
dermal growth factor (EGF) receptor family. ERBB1, the 
EGF receptor, is overexpressed in 80� of sTuamous cell 
carcinomas of the lung, 50� or more of glioblastomas, and 
80� to 100� of epithelial tumors of the head and neck. As 
mentioned earlier, the gene encoding a related receptor, 
+E5� �E5BB��, is amplified in approximately 20� of breast 
cancers and in a smaller fraction of adenocarcinomas of the 
lung, ovary, stomach, and salivary glands. These tumors 
are exTuisitely sensitive to the mitogenic effects of small 
amounts of growth factors. The significance of +E5� in the 
pathogenesis of breast cancers is illustrated dramatically 
by the clinical benefit derived from blocking the extracel-
lular domain of this receptor with anti-HER2 antibodies, 
an elegant example of ´bench to bedsideµ medicine. In 
other instances, tyrosine kinase activity is stimulated by 
point mutations or small indels that lead to subtle but 
functionally important changes in protein structure, or 
gene rearrangements that create fusion genes encoding chi-
meric receptors. In each of these cases, the mutated recep-
tors are constitutively active, delivering mitogenic signals 
to cells even in the absence of growth factors. These types 
of mutations are most common in leukemias, lymphomas, 
and certain forms of sarcoma.

Downstream Signal-Transducing Proteins
Cancer cells often acTuire groZth autonoPy as a result 
of Putations in genes that encode coPponents 

Fig. 6.18 Model for action of RAS. When a normal cell is stimulated through 
a growth factor receptor, inactive (GDP-bound) RAS is activated to a GTP-
bound state. Activated RAS transduces proliferative signals to the nucleus 
along two pathways: the so-called “RAF/ERK/MAP kinase pathway” and the 
PI3 kinase/AKT pathway. GDP, Guanosine diphosphate; GTP, guanosine triphos-
phate; MAP, mitogen-activated protein; PI3, phosphatidylinositol-3. 
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Mechanisms controlling tumor induction by oncogenes

Increased production of growth factor



Increase of growth factor receptor

Mechanisms controlling tumor induction by oncogenes



EXAMPLE OF TRANSDUCTION PATHWAY



Mutation of signal transduction genes

Mechanisms controlling tumor induction by oncogenes



Mutations of genes encoding for transcription factors

Mechanisms controlling tumor induction by oncogenes



CANCER GENES 
 
ALTERATION OF GENES THAT IS "FIXED" IN THE DNA AND 

TRANSMITTED TO DAUGHTER CELLS  
 
1) GENES THAT POSITIVELY REGULATE PROLIFERATION: 
 PROTOONCOGENES    ONCOGENES 
MECHANISM: MUTATIONS, GENIC FUSION, AMPLIFICATION 
 
2) GENES THAT NEGATIVELY REGULATE PROLIFERATION: 
 ONCOSUPPRESSOR GENES 
MECHANISM: GENE INACTIVATION of both alleles (mutation, 
deletion, etc) 
 
 
 
 

• Proto-oncogenes: normal cellular genes whose products promote cell proliferation 
• Oncogenes: mutant or overexpressed versions of proto- oncogenes that function 
autonomously without a requirement for normal growth-promoting signals 



Onco-suppressor genes
Normal and mutated p53 gene



Roles of p53 protein

Oncosuppressor genes



NETWORKS AND CANCER:

Predizione dell’esito del cancro al seno in base 
alla modularità dinamica delle reti di interazione proteina-
proteina



Impact Factors for journals published by Nature Publishing Group
2013 Impact Factors – released July 2014

At NPG we are committed to serving the needs of scientists and their science. We do this best by selecting and communicating
the most important and valuable scientific information to the broadest possible audience. The 2013 Impact Factors reflect
NPG's success at doing this, and the exceptional authors and referees that we are privileged to work with. For a summary,
please read our press release.

The table lists the 2013 Impact Factor and category ranks for journals published by NPG. Data is taken from the 2013
Journal Citation Report, Science Edition (Thomson Reuters, 2014).

A number of journals are listed in more than one category in the Journal Citation Report. In these cases, the category in which
the journal has highest rank is listed.

Journal Impact
Factor

RANK (by Impact
Factor) CATEGORY

Nature 42.351 1/55 Multidisciplinary
Sciences

Nature Communications 10.742 3/55 Multidisciplinary
Sciences

Scientific Reports 5.078 5/55 Multidisciplinary
Sciences

Scientific American 1.328 15/55 Multidisciplinary
Sciences

Nature research journals

Nature Biotechnology 39.08 1/165 Biotechnology &
Applied Microbiology

Nature Cell Biology 20.058 7/185 Cell Biology

Nature Chemistry 23.297 4/148 Chemistry,
Multidisciplinary

Nature Chemical Biology 13.217 10/291 Biochemistry and
Molecular Biology

Nature Climate Change 15.295 2/215 Environmnetal
Sciences

Nature Genetics 29.648 2/164 Genetics & Heredity

Nature Geoscience 11.668 1/173 Geosciences,
Multidisciplinary

Nature Immunology 24.973 3/144 Immunology

Nature Materials 36.425 1/136 Physics, Applied

Nature Medicine 28.054 1/122 Medicine, Research &
Experimental

Nature Methods 25.953 1/78 Biochemical Research
Methods

Nature Nanotechnology 33.265 1/73 Nanoscience &,
Nanotechnology

Nature Neuroscience 14.976 6/251 Neurosciences

Nature Photonics 29.958 1/82 Optics

Nature Physics 20.603 3/77 Physics,
Multidisciplinary

Nature Protocols 7.782 3/78 Biochemical Research
Methods

Nature Structural and Molecular Biology 11.633 2/74 Biophysics

Nature review journals

Nature Reviews Cancer 37.912 2/202 Oncology

Nature Reviews Cardiology (formerly Nature
Clinical Practice Cardiovascular Medicine) 10.154 5/125

Cardiac &
Cardiovascular
Systems

Nature Reviews Clinical Oncology (formerly
Nature Clinical Practice Oncology) 15.696 7/202 Oncology

Nature Drug Discovery 37.231 1/254 Pharmacology &
Pharmacy

Nature Reviews Endocrinology (formerly
Nature Clinical Practice Endocrinology &
Metabolism)

12.958 3/123 Endocrinology &
Metabolism

Nature Reviews Gastroenterology and
Hepatology (formerly Nature Clinical Practice
Gastroenterology and Hepatology)

10.807 4/74 Gastroenterology &
Hepatology

Nature Reviews Genetics 39.794 1/164 Genetics & Heredity

Nature Reviews Immunology 33.836 2/144 Immunology

Nature Reviews Microbiology 23.317 1/119 Microbiology

Nature Reviews Molecular Cell Biology 36.458 1/185 Cell Biology

Nature Reviews Nephrology (formerly Nature
Clinical Practice Nephrology) 8.368 4/75 Urology & Nephrology

Nature Reviews Neurology (formerly Nature
Clinical Practice Neurology) 14.103 3/194 Clinical Neurology

Nature Reviews Neuroscience 31.376 1/251 Neurosciences

Nature Reviews Rheumatology (formerly
Nature Clinical Practice Rheumatology) 10.252 1/30 Rheumatology

Nature Reviews Urology (formerly Nature
Clinical Practice Urology) 4.522 7/75 Urology & Nephrology

Academic & society journals



TYPES OF HUBS

Party hubs
(intramodular)

Date hubs
(intermodular)

- 'party' hubs function inside modules and coordinate 
specific cellular processes
- 'date' hubs link together rather different processes
and organize the interactome



BACKGROUND: PREVIOUS STUDIES HAVE SHOWN THAT: 
- Gene expression is altered in tumor cells comparing to 
normal cells 
- Proteins encoded by genes which are upregulated in 
cancer  have a higher degree (lung carcinoma with 
squamous cells) 
- Proteins involved in cancer have higher number of 
interactions

QUESTION: does the altered gene expression in cancer affect 
interactome organization and thus influences disease 
prognosis



APPLICATION PHASES:

1. General identification and characterization of hubs in 
PPI networks

2. Evaluation of the general importance of hubs in PPI networks

3. Characterization of hubs in cancer

4. Prediction of cancer evolution through  dynamic properties
of PPI networks

5. Conclusions



a. Identification of hubs in 3 databases of
protein-protein interactions:

1. OPHID
2. MINT
3. STRING

Hub = nodes with at least 5 links/interactors

b. Study of dynamic modularity of the network: 
Quantification of hub co-expression with its  direct 
neighbours/partners using genome-wide co-expression in
79 human tissues

1. General identification and characterization of hubs in 
PPI networks
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Databases and ontologies
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ABSTRACT
Motivation: High-throughput experiments are being performed at an
ever-increasing rate to systematically elucidate protein–protein inter-
action (PPI) networks for model organisms, while the complexities of
higher eukaryotes have prevented these experiments for humans.
Results: The Online Predicted Human Interaction Database (OPHID)
is a web-based database of predicted interactions between human
proteins. It combines the literature-derived human PPI from BIND,
HPRD and MINT, with predictions made from Saccharomyces
cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and
Mus musculus. The 23 889 predicted interactions currently listed in
OPHID are evaluated using protein domains, gene co-expression and
Gene Ontology terms. OPHID can be queried using single or multiple
IDs and results can be visualized using our custom graph visualization
program.
Availability: Freely available to academic users at http://ophid.
utoronto.ca, both in tab-delimited and PSI-MI formats. Commercial
users, please contact I.J.
Contact: juris@ai.utoronto.ca
Supplementary information: http://ophid.utoronto.ca/supplInfo.pdf

INTRODUCTION
The network of protein–protein interactions (PPIs), referred to as
the interactome, forms a backbone of signaling pathways, metabolic
pathways and cellular processes required for normal cell function.
Complete knowledge of these pathways will help in the understand-
ing of the normal processes in the cell, as well as how diseases such
as cancer develop frommutation of individual pathway components.
It has been the central aim of many high-throughput (HTP) exper-
iments to elucidate the PPI networks in model organisms such as
Saccharomyces cerevisiae (Gavin et al., 2002; Ho et al., 2002; Ito
et al., 2001; Uetz et al., 2000), Caenorhabditis elegans (Li et al.,
2004), Drosophila melanogaster (Giot et al., 2003) and Mus mus-
culus (Suzuki et al., 2003). While few studies have been performed
in humans (Colland et al., 2004; Lehner et al., 2004), we have used
the HTP model organism interactions to infer some of the millions
of potential human PPIs.
Many databases are devoted to the human interactome, with a

substantial number of them appearing in recent months [DIP, HPID,
HPRD, MINT, PINdb (Han et al., 2004; Luc and Tempst, 2004;
Peri et al., 2003; Xenarios et al., 2000; Zanzoni et al., 2002)].
However, the majority of these databases are derived from hand-
curated, literature-based interactions. Although highly useful in

∗To whom correspondence should be addressed.

providing ready access to the known human interactions, they do
little to expand the knowledge of the interactome. Several data-
bases have also been published that make predictions about the
functional relationships between proteins based on a variety of in
silico methods (Predictome, STRING, Prolinks, POINT) (Bowers
et al., 2004; Huang et al., 2004; Mellor et al., 2002; von Mering
et al., 2003).
The Online Predicted Human Interaction Database (OPHID) was

designed to extend the human interactome using model organism
data and to provide a repository for already known, experimentally
derived human PPIs. While these predictions should be thought of as
hypotheses until experimentally validated, there is increasing evid-
ence that PPIs are conserved through evolution (Pagel et al., 2004;
Wuchty et al., 2003). OPHID catalogs 16 034 known human PPIs
obtained from BIND, MINT and HPRD, and makes predictions for
23 889 additional interactions.
Multiple types of evidence have been used in the literature both

to support experimentally derived PPIs and to predict interactions
in silico. Examples include domain–domain co-occurrence (Deng
et al., 2002; Sprinzak andMargalit, 2001), gene co-expression (Bader
et al., 2004; Deane et al., 2002; Deng et al., 2003) and Gene Onto-
logy (GO) terms (Bader et al., 2004; Sprinzak et al., 2003). Using
the combination of the three types of evidence allows us to support
a broader range of PPIs than any single method.
We have applied all three evidence types to OPHID, providing

support for 5483 (23%)of our predictedPPIs.Webelieve thatOPHID
will be a useful resource for researchers concerned with the human
interactome, especiallywhen integratedwith additionalHTPdatasets
that are likely to be available in the future.

SYSTEM AND METHODS
OPHID generation
OPHID was constructed by mapping model organism PPIs to human pro-
tein orthologs using BLASTP and the reciprocal best-hit approach. Briefly, a
database ofmodel organism-to-human orthologs was constructed by BLAST-
ing each model organism protein against the Swiss-Prot database filtered for
human proteins. Each top BLAST hit with an E-value <10− 5 was BLAS-
Ted back against the set of all model organism protein sequences. If the
top hit in the reverse direction (with E-value <10− 5) matched the original
query protein, the matching human protein was selected as a potential ortho-
log. These were filtered to remove any hits that occurred over <50% of the
query sequence length, to avoid interactions that may involve a single protein
domain.
Each model organism protein was translated to its human ortholog and a

predicted human interactionwas added if both proteins in themodel organism
interaction were conserved in humans. Model organism PPIs were added
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Welcome to  I2D!

To faciliate experimentation and integrated computational analysis with model organism PPI networks, we have
integrated known, experimental and predicted PPIs for five model organisms and human in the I2D database.

I2D is developed and maintained by Jurisica Lab at Ontario Cancer Institute, PMH. I2D will continue to
expand as new protein-protein interaction data becomes available.
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Database  Access

The latest I2D version 1.95 is
available for download in its entirety.

 

I2D can also be queried online via a
web interface.

Visual izat ion

NAViGaTOR is a powerful graphing
application for the 2D and 3D
visualization of biological networks

When I2D is queried, it can output
data in several formats one of which
is a NAViGaTOR compatible file. This
file can be opened up in NAViGaTOR
for visualization and further analysis.
I2D can also be queried from within
NAViGaTOR.

  with NAViGaTOR!
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Welcome to  I2D!

To faciliate experimentation and integrated computational analysis with model organism PPI networks, we have
integrated known, experimental and predicted PPIs for five model organisms and human in the I2D database.

I2D is developed and maintained by Jurisica Lab at Ontario Cancer Institute, PMH. I2D will continue to expand
as new protein-protein interaction data becomes available.

References

Brown, K.R., and Jurisica, I. (2007) Unequal evolutionary conservation of human protein interactions in
interologous networks. 
Genome Biology, 8(5):R95. PubMed | PDF

Brown, K.R., and Jurisica, I. (2005) Online Predicted Human Interaction Database. 
Bioinformatics, 21(9):2076-82. PubMed | PDF

Stat ist ics

Database Access

The latest I2D version 2.3 is available
for download in its entirety.

 

I2D can also be queried online via a
web interface.

Visual izat ion
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Savas, S., Geraci, J., Jurisica, I., Liu, G. A comprehensive catalogue of functional genetic variations in the EGFR pathway: Protein-protein interaction
analysis reveals novel genes and polymorphisms important for cancer research. Int J Cancer,125(6): 1257-65, 2009.

PPI network generated from the 122 core f-EGFR proteins; comprising 2,425 proteins and 4,458 interactions. The triangular nodes represent the 122 core f-EGFR proteins and the 71
blue nodes represent those proteins in the ERBB pathway, that are also members of this PPI network. The 26 nodes on the diagonal (blue triangles) are those proteins that belong to
both the core f-EGFR proteins and EGFR pathway. The 8 nodes framed in red along the diagonal are highly connected in this PPI network.
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https://mint.bio.uniroma2.it/

Molecular INTeraction database

go to: HomoMINT: an inferred human network Domino: a domain peptide interactions database VirusMINT: a virus protein interactions database

Home Search Curation Statistics Download Contacts/Links/Linking

Statistics:
199787 interactions
33494 proteins
4564 pmids

FEBS Letters special issue:
the Digital, Democratic Age
of Scientific Abstracts

The spreadsheet for data
submission to the FEBS
Letters experiment: is
available here

Welcome to MINT, the Molecular INTeraction database. MINT focuses on experimentally verified
protein-protein interactions mined from the scientific literature by expert curators. The full MINT
dataset can be freely downloaded.

The curated data can be analyzed in the context of the high
throughput data and viewed graphically with the 'MINT Viewer'.

MINT has signed the IMEx agreement (http://www.imexconsortium.org/) to share curation
efforts and supports the Protein Standard Initiative (PSI) recommendation. 

FEBS Letters and the FEBS Journal in collaboration with
MINT enhance the content of their articles with the addition
of Structured Digital Abstracts

Please, in any articles making use of the data extracted from MINT, refer to MINT, the molecular
interaction database: 2009 update. Ceol A, Chatr Aryamontri A, Licata L, Peluso D, Briganti L,
Perfetto L, Castagnoli L, Cesareni G. Nucleic Acids Res. 2010 Jan;38(Database issue):D532-9.
Epub 2009 Nov 6.[Abstract]

Posted by Admin on 2011/03/15: 
Added 2011.03 UniProt API version
Added Psicquic query results to

MINT search output

https://mint.bio.uniroma2.it/
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The MIPS Mammalian Protein-Protein
Interaction Database

The MIPS Mammalian Protein-Protein Interaction Database is a collection of manually
curated high-quality PPI data collected from the scientific literature by expert curators. We
took great care to include only data from individually performed experiments since they
usually provide the most reliable evidence for physical interactions.

Search the database

To suit different users needs we provide a variety of interfaces to search the database:

Expert interface – Simple but powerful boolean query language.
PPI search form – Easy to use PPI search
Protein search – Just find proteins of interest in the database

Background

Protein-protein interactions (PPI) represent a pivotal aspect of protein function. Almost every
cellular process relies on transient or permanent physical binding of two or more proteins in
order to accomplish the respective task. Comprehensive databases of PPI in Saccharomyces
cerevisiae have proved to be invaluable resources for both bioinformatics and experimental
research and are used heavily in the scientific community.

Although yeast is a well established model organism, not all interactions in higher
eukaryotes have equivalent counterparts in unicellular systems. Currently, publicly available
PPI databases contain comparatively few entries from mammals so we embarked on building
a high-quality, manually curated database of protein-protein interactions in mammals.

Conditions of use

You are free to use the database as you please including full download of the dataset for your
own analyses as long as you cite the source properly:

Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone
C, Mark P, Stümpflen V, Mewes HW, Ruepp A, Frishman D
The MIPS mammalian protein-protein interaction database
Bioinformatics 2005; 21(6):832-834; [Epub 2004 Nov 5]   doi:10.1093/bioinformatics/bti115

The Institute of Bioinformatics and Systems Biology (IBIS) is part of 
the Helmholtz Zentrum München - German Research Center for 
Environmental Health and hosts the Munich Information Center for Protein 
Sequences (MIPS)

A! non confondere MINT con MIPS!



http://string-db.org/

STRING - Known and Predicted Protein-Protein Interactions

search
by name

search by
protein sequence

multiple
names

multiple
sequences  

  

(STRING understands a variety of protein names
 and accessions; you can also try a random entry)
 
organism:

auto-detect

interactors wanted:

 

      

   

    

What it does ...

STRING is a database of known and predicted protein interactions.
The interactions include direct (physical) and indirect (functional) associations;
they are derived from four sources:
 

Genomic
Context

 
High-throughput

Experiments
 

(Conserved)
Coexpression

 
Previous

Knowledge
 

    

 

STRING quantitatively integrates interaction data from these sources for a large
number of organisms, and transfers information between these organisms where
applicable. The database currently covers 5'214'234 proteins from 1133
organisms.

please enter your protein of interest...

 More Info  Funding / Support  Acknowledgements  Use Scenarios 
  

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) is being developed at CPR, EMBL, SIB, KU, TUD and UZH. 
STRING references: Szklarczyk et al. 2011  /  2009  /  2007  /  2005  /  2003  /  Snel et al. 2000. 
Miscellaneous: Access Statistics, Robot Access Guide, STRING/STITCH Blog, Supported Browsers. 
 
What's New? This is version 9.0 of STRING - now covering more than 1100 organisms (and counting) !
Sister Projects: check out STITCH and eggNOG - two sister projects built on STRING data!
Previous Releases: Trying to reproduce an earlier finding? Confused? Refer to our old releases.

 

protein name: (examples: #1 #2 #3)

String database di interazioni proteina-proteina

http://string-db.org/




A gene atlas of the mouse and human
protein-encoding transcriptomes
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The tissue-specific pattern of mRNA expression can indicate im-
portant clues about gene function. High-density oligonucleotide
arrays offer the opportunity to examine patterns of gene expres-
sion on a genome scale. Toward this end, we have designed custom
arrays that interrogate the expression of the vast majority of
protein-encoding human and mouse genes and have used them to
profile a panel of 79 human and 61 mouse tissues. The resulting
data set provides the expression patterns for thousands of pre-
dicted genes, as well as known and poorly characterized genes,
from mice and humans. We have explored this data set for global
trends in gene expression, evaluated commonly used lines of
evidence in gene prediction methodologies, and investigated pat-
terns indicative of chromosomal organization of transcription. We
describe hundreds of regions of correlated transcription and show
that some are subject to both tissue and parental allele-specific
expression, suggesting a link between spatial expression and
imprinting.

The completion of the human and mouse genome sequences
opened an historic era in mammalian biology. One common

conclusion from these projects was the determination that
mammals have only !30,000 protein-encoding genes (1, 2). Yet,
despite the apparent tractability of this figure (earlier estimates
were much higher), to date all existing research has determined
the function of only a fraction of these genes. Currently, only
!15,000 human and !10,000 mouse genes are described in the
literature (Medline, www.ncbi.nih.gov!Pubmed). The challenge
and opportunity for genomics strategies and techniques are to
accelerate the functional annotation of novel genes from the
uncharted genome.

High-throughput technologies for biological annotation have
the capacity to partially address the discrepancy between the
identification of genes and the understanding of their function.
For example, proteins have well defined molecular roles encoded
in their primary amino acid sequence as domains. Using se-
quence informatics, these domains can be used as a tool to search
the entire genome to find protein family members that likely
function in an analogous manner. Gene expression arrays have
also been a useful tool for genome-wide studies where changes
in gene expression can be associated with physiological or
pathophysiological states (3). Recently, other high-throughput
techniques such as RNA interference (4) and cDNA overex-
pression (5) have been developed, further accelerating func-
tional genome annotation. The integration of these diverse
strategies is critical to annotation efforts and remains a signif-
icant challenge.

Previously, we generated a preliminary description of the
human and mouse transcriptome using oligonucleotide arrays
that interrogate the expression of !10,000 human and !7,000
mouse target genes (6). We explored this data set for insights
into gene function, transcriptional regulation, disease etiology,
and comparative genomics. However, this data set was based on
commercially available gene expression arrays and therefore was
biased toward previously characterized genes. In this report, we
significantly extend this earlier work by determining the expres-

sion patterns of previously uncharacterized protein-encoding
genes and de novo gene predictions from the mouse and human
genome projects. Using custom-designed whole-genome gene
expression arrays that target 44,775 human and 36,182 mouse
transcripts, we have built a more extensive gene atlas using a
panel of RNAs derived from 79 human and 61 mouse tissues.
This data set constitutes one of the largest quantitative evalua-
tions of gene expression of the protein-encoding transcriptome
to date.

Building on our previous analyses, these expression patterns
were examined for global trends in gene expression. We also
provide experimental validation of thousands of gene predic-
tions and use these data to determine which of the commonly
used types of evidence for gene prediction most accurately
correlates with expressed genes. In addition, we used this data set
to search for chromosomal regions of correlated transcription
(RCTs), which may indicate higher-order mechanisms of tran-
scriptional regulation. Furthermore, we show that some of these
tissue-specific coregulated genes are subject to another form of
regulation, parental imprinting, and thus that several of these
regions are under the control of both tissue- and parental
allele-specific expression. Finally, we have made these data
publicly available for searching and visualization by keyword,
accession number, sequence, expression pattern, and coregula-
tion at our web site (http:!!symatlas.gnf.org).

Materials and Methods
Microarray Chip Design. We identified a nonredundant set of
target sequences for the human and mouse using the following
sources: RefSeq (15,491 human and 12,029 mouse sequences)
(7); Celera (49,859 human and 29,331 mouse sequences) (8);
Ensembl (33,698 human sequences); and RIKEN (46,299 mouse
sequences) (9). First, all sequences were screened with REPEAT-
MASKER (www.repeatmasker.org) to remove repetitive elements.
Next, sequence identity between individual sequences was es-
tablished by using pairwise BLAT (10) or BLAST (11) and SIM4
(12). The results from single-linkage clustering were further
triaged to produce a final target set of 44,775 human and 36,182
mouse targets with the highest degree of confidence of compu-
tational prediction [biasing toward sequences containing Inter-
pro domains (13) and away from noncoding RNAs]. Finally, the
human sequence set was pruned of all targets already repre-
sented on the Affymetrix (Santa Clara, CA) commercially
available HG-U133A array, leaving 22,645 target sequences for
our custom array. One hundred target sequences from the
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The tissue-specific pattern of mRNA expression can indicate im-
portant clues about gene function. High-density oligonucleotide
arrays offer the opportunity to examine patterns of gene expres-
sion on a genome scale. Toward this end, we have designed custom
arrays that interrogate the expression of the vast majority of
protein-encoding human and mouse genes and have used them to
profile a panel of 79 human and 61 mouse tissues. The resulting
data set provides the expression patterns for thousands of pre-
dicted genes, as well as known and poorly characterized genes,
from mice and humans. We have explored this data set for global
trends in gene expression, evaluated commonly used lines of
evidence in gene prediction methodologies, and investigated pat-
terns indicative of chromosomal organization of transcription. We
describe hundreds of regions of correlated transcription and show
that some are subject to both tissue and parental allele-specific
expression, suggesting a link between spatial expression and
imprinting.

The completion of the human and mouse genome sequences
opened an historic era in mammalian biology. One common

conclusion from these projects was the determination that
mammals have only !30,000 protein-encoding genes (1, 2). Yet,
despite the apparent tractability of this figure (earlier estimates
were much higher), to date all existing research has determined
the function of only a fraction of these genes. Currently, only
!15,000 human and !10,000 mouse genes are described in the
literature (Medline, www.ncbi.nih.gov!Pubmed). The challenge
and opportunity for genomics strategies and techniques are to
accelerate the functional annotation of novel genes from the
uncharted genome.

High-throughput technologies for biological annotation have
the capacity to partially address the discrepancy between the
identification of genes and the understanding of their function.
For example, proteins have well defined molecular roles encoded
in their primary amino acid sequence as domains. Using se-
quence informatics, these domains can be used as a tool to search
the entire genome to find protein family members that likely
function in an analogous manner. Gene expression arrays have
also been a useful tool for genome-wide studies where changes
in gene expression can be associated with physiological or
pathophysiological states (3). Recently, other high-throughput
techniques such as RNA interference (4) and cDNA overex-
pression (5) have been developed, further accelerating func-
tional genome annotation. The integration of these diverse
strategies is critical to annotation efforts and remains a signif-
icant challenge.

Previously, we generated a preliminary description of the
human and mouse transcriptome using oligonucleotide arrays
that interrogate the expression of !10,000 human and !7,000
mouse target genes (6). We explored this data set for insights
into gene function, transcriptional regulation, disease etiology,
and comparative genomics. However, this data set was based on
commercially available gene expression arrays and therefore was
biased toward previously characterized genes. In this report, we
significantly extend this earlier work by determining the expres-

sion patterns of previously uncharacterized protein-encoding
genes and de novo gene predictions from the mouse and human
genome projects. Using custom-designed whole-genome gene
expression arrays that target 44,775 human and 36,182 mouse
transcripts, we have built a more extensive gene atlas using a
panel of RNAs derived from 79 human and 61 mouse tissues.
This data set constitutes one of the largest quantitative evalua-
tions of gene expression of the protein-encoding transcriptome
to date.

Building on our previous analyses, these expression patterns
were examined for global trends in gene expression. We also
provide experimental validation of thousands of gene predic-
tions and use these data to determine which of the commonly
used types of evidence for gene prediction most accurately
correlates with expressed genes. In addition, we used this data set
to search for chromosomal regions of correlated transcription
(RCTs), which may indicate higher-order mechanisms of tran-
scriptional regulation. Furthermore, we show that some of these
tissue-specific coregulated genes are subject to another form of
regulation, parental imprinting, and thus that several of these
regions are under the control of both tissue- and parental
allele-specific expression. Finally, we have made these data
publicly available for searching and visualization by keyword,
accession number, sequence, expression pattern, and coregula-
tion at our web site (http:!!symatlas.gnf.org).

Materials and Methods
Microarray Chip Design. We identified a nonredundant set of
target sequences for the human and mouse using the following
sources: RefSeq (15,491 human and 12,029 mouse sequences)
(7); Celera (49,859 human and 29,331 mouse sequences) (8);
Ensembl (33,698 human sequences); and RIKEN (46,299 mouse
sequences) (9). First, all sequences were screened with REPEAT-
MASKER (www.repeatmasker.org) to remove repetitive elements.
Next, sequence identity between individual sequences was es-
tablished by using pairwise BLAT (10) or BLAST (11) and SIM4
(12). The results from single-linkage clustering were further
triaged to produce a final target set of 44,775 human and 36,182
mouse targets with the highest degree of confidence of compu-
tational prediction [biasing toward sequences containing Inter-
pro domains (13) and away from noncoding RNAs]. Finally, the
human sequence set was pruned of all targets already repre-
sented on the Affymetrix (Santa Clara, CA) commercially
available HG-U133A array, leaving 22,645 target sequences for
our custom array. One hundred target sequences from the
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Pearson correlation coefficient (PCC) = descriptor of the 
degree of linear association between two variables.

The correlation coefficient ranges from −1 to 1. A value of 1 
implies that a linear equation describes the relationship 
between X and Y perfectly, with all data points lying on a line 
for which Y increases as X increases. A value of −1 implies 
that all data points lie on a line for which Y decreases as X 
increases. A value of 0 implies that there is no linear 
correlation between the variables.



How are hubs co-expressed
with their direct interactors? 

Party hubs
(intramodulari)

Date hubs
(intermodulari)



Dynamic modularity of human interactome: multimodal (bimodal) 
distribution of hubs
(Modularità dinamica dell’interactoma umano: distribuzione multimodale degli hubs)

E’ stata calcolata la co-espressione tra ogni hub e i suoi interattori. Sono stati utilizzati dati del database OPHID 
e dell’atlante di transcrittomica di Su A.I. et al., Proc. Natl. Acad. Sci., 2004 
Gli edges nella rete organizzata come circonferenza (a) sono colorati in base al valore del PCC 
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Intermodular hubs have been proposed to be critical for global
network connectivity7. We tested this by systematically removing
either intermodular or intramodular hubs from the interaction net-
work and analyzing the number of paths between nodes using a
topological measure known as ‘betweenness’13. Betweenness measures
information flow through networks, with high betweenness reflecting
multiple paths between nodes and low betweenness few paths. In a
biological context, betweenness measures the ways in which signals
can pass through the interaction network. Betweenness was more
strongly affected by removing inter- rather than intramodular hubs
(Fig. 1c). Another topological measure of global network connectivity
is the characteristic path length (CPL), which is the average of the

shortest path between all nodes in a network14. Systematic removal of
intermodular hubs increased CPL to a threshold beyond which CPL
rapidly collapsed due to splintering of the large network into small
subnetworks (Fig. 1d). In contrast, intramodular hub removal only
increased CPL. The greater sensitivity of both betweenness and CPL to
removal of intermodular hubs is consistent with the notion that the
human interactome is modular with intermodular hubs connecting
functional modules that are comprised of intramodular hubs.
Next, we asked whether hub types display characteristic biochemical

features. We found that intermodular hubs were larger than intra-
modular hub proteins (Mann-Whitney U-test, P o 0.005, Supple-
mentary Fig. 3a online). Analysis of domain numbers (modularity)
and size (globularity) revealed intermodular hubs have more domains
compared to a randomized distribution, whereas intramodular hubs
have fewer domains than expected by chance (P o 0.05 and P o 0.01
respectively, Fig. 2a). Conversely, intramodular hubs have greater
globularity (domain size) and intermodular hubs less (P o 0.05 and
P o 0.01, respectively, Fig. 2b). Linear motifs (that is, post-transla-
tional modifications and short binding motifs15) are over- and under-
represented in intermodular and intramodular hubs, respectively
(P o 0.005, Fig. 2c; Supplementary Fig. 3b).
We then explored domain types in the different hub classes. Cell

signaling domains (as defined by the SMART database16) were
enriched in intermodular hubs (sign test, P o 0.001), whereas
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Figure 1 Evidence of dynamic network modularity in the human
interactome. (a) The probability density of the average PCC of co-expression
for human hub proteins with their interactors across 79 human tissues (red
line) is compared to randomized data (dashed black line). (b) Same as (a)
but only using human hub proteins conserved in yeast (red line) compared
to randomized data (dashed black line). (c) Network betweenness as a
function of removing equivalent numbers of intermodular or intramodular
hubs. (d) Characteristic path length of the network as a function of removing
equivalent numbers of intermodular or intramodular hubs.
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Figure 2 Structural and functional features of intermodular and
intramodular hubs. (a) Mean modularity (number of different domains/
protein) from observed intermodular hubs (red line) or intramodular hubs
(blue line) versus a distribution of randomized samples (black). (b) Mean
globularity (sequence length of domains) found in observed intermodular or
intramodular hubs compared to randomized distributions. (c) Mean number of experimentally validated linear motifs and phosphosites from the ELM and
Phospho-ELM database in intermodular or intramodular hubs compared to randomized distributions. (d) Domain distribution between intermodular hubs and
intramodular hubs. The frequency of individual domains in intermodular hubs minus their frequency in intramodular hubs was plotted for each of the signaling
domains (top panel, orange bars) or non-signaling domains (bottom panel, green bars), as indicated. A frequency of 1 indicates domains are found exclusively
in intermodular hubs, whereas a frequency of –1 indicates exclusively intramodular hubs. Note that to retain legibility only a fraction of nonsignaling domains
are labeled.
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1. General identification and characterization of hubs in 
PPI networks

b



Explanation of the previous slide

Evidence of dynamic modularity in the human interactome (a) Network graph of the dynamic 
modular nature of the human interactome. Intramodular hubs (blue) and intermodular hubs 
(red) are arranged around the circumference, with interactions shown as edges that are 
coloured according to the PCC of co-expression of the partner proteins as shown. (b) The 
probability density of the average PCC of co- expression for human hub proteins with their 
interactors across 79 human tissues (red line) is shown.

A bimodal distribution is apparent for the observed data whereas a randomization of 
the same data result in a unimodal distribution (dashed black line).

In matematica, una funzione di densità di probabilità (o pdf dall'inglese probability density 
function) è la funzione di probabilità di una variabile casuale nel caso in cui la variabile 
casuale  sia continua, cioè l'insieme dei possibili valori ha la potenza del continuo. Essa 
descrive la "densità" di probabilità in ogni punto nello spazio campionario.

http://it.wikipedia.org/wiki/Matematica
http://it.wikipedia.org/wiki/Funzione_di_probabilit%C3%A0
http://it.wikipedia.org/wiki/Variabile_casuale
http://it.wikipedia.org/wiki/Variabile_casuale_continua
http://it.wikipedia.org/wiki/Potenza_del_continuo
http://it.wikipedia.org/wiki/Spazio_campionario


Una distribuzione di probabilità è, in sostanza, 
una funzione matematica che, per ogni valore 
della variabile, fornisce la probabilità che venga 
osservato quel valore. 

La distribuzione di probabilità continua: il risultato 
cade in un certo intervallo finito di valori, compreso, 
ad esempio, fra  a e b. Una tale probabilità, P(a, b) si 
esprime come un integrale: 

Figura 1.1: Distribuzione di probabilità per il risultato del
lancio di due dadi.

Esistono poi distribuzioni di probabilità continue, per le quali è possibile che si osservino
valori compresi in un certo intervallo (eventualmente di ampiezza infinita) di numeri reali.
Qui le cose si complicano un poco, dal punto di vista matematico. Infatti, data l'infinità non
numerabile dei numeri reali in un qualsiasi intervallo, dobbiamo concludere che non ha senso
assegnare una probabilità finita a ciascuno di essi: paradossalmente, ogni risultato, per quanto
possibile, deve avere probabilità nulla. L'unica probabilità finita che ha senso definire è quella
che il risultato cada in un certo intervallo finito di valori, compreso, ad esempio, fra  e .
Una tale probabilità, , si esprime come un integrale 

(1.1)

e la funzione , che definisce la distribuzione, è chiamata densità di probabilità e può

essere considerata come la derivata della probabilità. La densità di probabilità  è dunque

pari alla probabilità che il risultato cada in un intervallo infinitesimamente piccolo attorno al
valore  divisa per l'ampiezza di questo intervallo. Normalmente, come abbiamo fatto
nell'esempio del dado, la probabilità è normalizzata all'unità, vale a dire che la probabilità di
ottenere un qualsiasi risultato non specificato (cioè la somma di tutte le probabilità) è pari ad
uno (certezza). Nel caso continuo, questo si esprime nel modo seguente: 

(1.2)
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Qui le cose si complicano un poco, dal punto di vista matematico. Infatti, data l'infinità non
numerabile dei numeri reali in un qualsiasi intervallo, dobbiamo concludere che non ha senso
assegnare una probabilità finita a ciascuno di essi: paradossalmente, ogni risultato, per quanto
possibile, deve avere probabilità nulla. L'unica probabilità finita che ha senso definire è quella
che il risultato cada in un certo intervallo finito di valori, compreso, ad esempio, fra  e .
Una tale probabilità, , si esprime come un integrale 
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e la funzione , che definisce la distribuzione, è chiamata densità di probabilità e può

essere considerata come la derivata della probabilità. La densità di probabilità  è dunque

pari alla probabilità che il risultato cada in un intervallo infinitesimamente piccolo attorno al
valore  divisa per l'ampiezza di questo intervallo. Normalmente, come abbiamo fatto
nell'esempio del dado, la probabilità è normalizzata all'unità, vale a dire che la probabilità di
ottenere un qualsiasi risultato non specificato (cioè la somma di tutte le probabilità) è pari ad
uno (certezza). Nel caso continuo, questo si esprime nel modo seguente: 

(1.2)

= densità di probabilità = probabilità che il 
risultato cada in un intervallo infinitesimamente 
piccolo attorno al valore x divisa per l'ampiezza 
di questo intervallo. 

http://www.thch.unipg.it/~franc/i/node4.html

http://www.thch.unipg.it/~franc/i/node4.html
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Multimodal distribution of hubs identified using databases MINT 
and STRING

MINT STRING

1. General identification and characterization of hubs in 
PPI networks



1. General identification and characterization of hubs in 
PPI networks
Intramodular hubs have greater GO molecular function 
similarity with their partners than do intermodular hubs
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Gene Ontology (GO) 
molecular function of 
either intermodular
hubs (red line) or 
intramodular hubs 
(blue line) and their 
partners

Probability density of 
the semantic similarity 
(LinGO13) Gene 
Ontology (GO) 
molecular function of 
either intermodular 
hubs (red line) or 
intramodular hubs 
(blue line) is shown. 



1. General identification and characterization of hubs in 
PPI networks

Intramodular Hubs (party hubs) = high co-expression in the 
same tissues with their direct interactors; the interactions are
constitutive

Human interactome has two type of hubs:

Intermodular Hubs (date hubs) = low co-expression in the 
same tissues with their direct interactors; the interactions depend
on the biological context



1. General identification and characterization of hubs in 
PPI networks

1. Multi-modal distribution of hubs based on co-expression
PCC 

Continuation from previous slide

2. Modular Architetture of the interactome

In mathematics and computer science, higher-order functions are functions which do at least one of the following:
- take one or more functions as an input
- output a higher order function

3. Modular architecture leads to higher-order functions 
(funzioni di livello superiore): intermodular hubs confer a 
temporal and spatial links between intramodular hubs, which 
represent specific functions



APPLICATION PHASES:

1. General identification and characterization of hubs in 
PPI networks

2. Evaluation of the general importance of hubs in PPI networks

3. Characterization of hubs in cancer

4. Prediction of cancer evolution through  dynamic properties
of PPI networks

5. Conclusions



Background: Previous studies suggested a critical role for
Intermodular hubs in the connectivity of PPI network in yeast

was a consistent outlier for all genes, data from all pools were included in our analysis.
Differences between parental pools increase our confidence intervals for the interspecific
expression difference and can reduce our power for detecting trans-regulatory differences.
To deal with this issue, interspecific expression differences for genes with unusually large
variance between the four original pools were measured in an additional three parental
pools.

The normalization procedure used to correct cDNA measurements for experimental
bias (Supplementary Information) prohibits a standard nested analysis of variance, but a
t-test provided a simple and robust test of our null hypotheses. Two-tailed t-tests were used
to identify cis-regulatory divergence (H0: MelF1/SimF1 ¼ 1), interspecific expression
differences (H0: Mel/Sim ¼ 1) and parent-of-origin effects (H0: MelF1/SimF1 ¼ MelF1/
SimF1 in reciprocal crosses). To identify trans-regulatory divergence, two-sided t-tests
(with the Cochran correction for unequal variances) and nonparametric Mann–Whitney
U-tests were used to compare relative expression between hybrid and parental pools. The
decision to accept or reject the null hypothesis (H0:MelF1/SimF1 ¼ Mel/Sim) was the same
for both tests for all except three genes, and t-test significance was ultimately used to infer
trans-regulatory divergence. All statistical analyses were preformed with SAS software v.
8.2 (SAS Institute, Cary, North Carolina) and are shown in Supplementary Table 2.
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In apparently scale-free protein–protein interaction networks, or
‘interactome’ networks1,2, most proteins interact with few part-
ners, whereas a small but significant proportion of proteins, the
‘hubs’, interact with many partners. Both biological and non-
biological scale-free networks are particularly resistant to ran-
dom node removal but are extremely sensitive to the targeted
removal of hubs1. A link between the potential scale-free top-
ology of interactome networks and genetic robustness3,4 seems to
exist, because knockouts of yeast genes5,6 encoding hubs are
approximately threefold more likely to confer lethality than
those of non-hubs1. Here we investigate how hubs might con-
tribute to robustness and other cellular properties for protein–
protein interactions dynamically regulated both in time and in
space. We uncovered two types of hub: ‘party’ hubs, which
interact with most of their partners simultaneously, and ‘date’
hubs, which bind their different partners at different times or
locations. Both in silico studies of network connectivity and
genetic interactions described in vivo support a model of orga-
nized modularity in which date hubs organize the proteome,
connecting biological processes—or modules7—to each other,
whereas party hubs function inside modules.

The biological role of topological hubs, so far considered in static
representations of interactome networks without information on
the functional states of these networks—that is, dynamic or steady
state8—might vary depending on the timing and location of the
interactions they mediate (Fig. 1a). Because accurate temporal
parameters are not yet available for many protein–protein inter-
actions, we estimated temporal characteristics of hubs and their
partners by using compilations of yeast messenger RNA expression
profiling data9.

Hubs connected by false-positive interactions10 would be
uncorrelated in mRNA expression with their interaction part-
ners9,11, and would resemble date hubs. To minimize false positives,
we first generated a high-quality yeast interaction data set by
intersecting data generated by several different interaction detection
methods (see Methods). The resulting ‘filtered yeast interactome’
(FYI) data set contains 2,493 high-confidence interactions, each
observed by at least two different methods (Supplementary Fig. 1).
FYI is a high-quality network enriched for genuine positives
(Supplementary Information and Supplementary Fig. 2). The FYI
network contains 1,379 proteins with an average degree of 3.6
interactions per protein and a large connected component of 778
proteins. Its degree distribution follows the power law that charac-
terizes scale-free networks (Supplementary Fig. 3). FYI hubs were
characterized with an expression-profiling compendium of 315 data
points for most yeast genes across five different experimental
conditions (referred to below as the ‘yeast expression compen-
dium’9). For each hub we calculated the average of Pearson
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was a consistent outlier for all genes, data from all pools were included in our analysis.
Differences between parental pools increase our confidence intervals for the interspecific
expression difference and can reduce our power for detecting trans-regulatory differences.
To deal with this issue, interspecific expression differences for genes with unusually large
variance between the four original pools were measured in an additional three parental
pools.

The normalization procedure used to correct cDNA measurements for experimental
bias (Supplementary Information) prohibits a standard nested analysis of variance, but a
t-test provided a simple and robust test of our null hypotheses. Two-tailed t-tests were used
to identify cis-regulatory divergence (H0: MelF1/SimF1 ¼ 1), interspecific expression
differences (H0: Mel/Sim ¼ 1) and parent-of-origin effects (H0: MelF1/SimF1 ¼ MelF1/
SimF1 in reciprocal crosses). To identify trans-regulatory divergence, two-sided t-tests
(with the Cochran correction for unequal variances) and nonparametric Mann–Whitney
U-tests were used to compare relative expression between hybrid and parental pools. The
decision to accept or reject the null hypothesis (H0:MelF1/SimF1 ¼ Mel/Sim) was the same
for both tests for all except three genes, and t-test significance was ultimately used to infer
trans-regulatory divergence. All statistical analyses were preformed with SAS software v.
8.2 (SAS Institute, Cary, North Carolina) and are shown in Supplementary Table 2.
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In apparently scale-free protein–protein interaction networks, or
‘interactome’ networks1,2, most proteins interact with few part-
ners, whereas a small but significant proportion of proteins, the
‘hubs’, interact with many partners. Both biological and non-
biological scale-free networks are particularly resistant to ran-
dom node removal but are extremely sensitive to the targeted
removal of hubs1. A link between the potential scale-free top-
ology of interactome networks and genetic robustness3,4 seems to
exist, because knockouts of yeast genes5,6 encoding hubs are
approximately threefold more likely to confer lethality than
those of non-hubs1. Here we investigate how hubs might con-
tribute to robustness and other cellular properties for protein–
protein interactions dynamically regulated both in time and in
space. We uncovered two types of hub: ‘party’ hubs, which
interact with most of their partners simultaneously, and ‘date’
hubs, which bind their different partners at different times or
locations. Both in silico studies of network connectivity and
genetic interactions described in vivo support a model of orga-
nized modularity in which date hubs organize the proteome,
connecting biological processes—or modules7—to each other,
whereas party hubs function inside modules.

The biological role of topological hubs, so far considered in static
representations of interactome networks without information on
the functional states of these networks—that is, dynamic or steady
state8—might vary depending on the timing and location of the
interactions they mediate (Fig. 1a). Because accurate temporal
parameters are not yet available for many protein–protein inter-
actions, we estimated temporal characteristics of hubs and their
partners by using compilations of yeast messenger RNA expression
profiling data9.

Hubs connected by false-positive interactions10 would be
uncorrelated in mRNA expression with their interaction part-
ners9,11, and would resemble date hubs. To minimize false positives,
we first generated a high-quality yeast interaction data set by
intersecting data generated by several different interaction detection
methods (see Methods). The resulting ‘filtered yeast interactome’
(FYI) data set contains 2,493 high-confidence interactions, each
observed by at least two different methods (Supplementary Fig. 1).
FYI is a high-quality network enriched for genuine positives
(Supplementary Information and Supplementary Fig. 2). The FYI
network contains 1,379 proteins with an average degree of 3.6
interactions per protein and a large connected component of 778
proteins. Its degree distribution follows the power law that charac-
terizes scale-free networks (Supplementary Fig. 3). FYI hubs were
characterized with an expression-profiling compendium of 315 data
points for most yeast genes across five different experimental
conditions (referred to below as the ‘yeast expression compen-
dium’9). For each hub we calculated the average of Pearson
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Question: which is the role of intermodular hubs in the 
global PPI network with relevance for humans? 

2. Evaluation of the importance of hubs in PPI networks



2. Evaluation of the importance of hubs in PPI networks

L’effetto della rimozione in silico degli hubs intermodulari 
dimostra la loro importanza nella connettività globale della rete
(valutata misurando due indici di connettività: betweeness e 
shortest path) 

Intermodular hubs have been proposed to be critical for global
network connectivity7. We tested this by systematically removing
either intermodular or intramodular hubs from the interaction net-
work and analyzing the number of paths between nodes using a
topological measure known as ‘betweenness’13. Betweenness measures
information flow through networks, with high betweenness reflecting
multiple paths between nodes and low betweenness few paths. In a
biological context, betweenness measures the ways in which signals
can pass through the interaction network. Betweenness was more
strongly affected by removing inter- rather than intramodular hubs
(Fig. 1c). Another topological measure of global network connectivity
is the characteristic path length (CPL), which is the average of the

shortest path between all nodes in a network14. Systematic removal of
intermodular hubs increased CPL to a threshold beyond which CPL
rapidly collapsed due to splintering of the large network into small
subnetworks (Fig. 1d). In contrast, intramodular hub removal only
increased CPL. The greater sensitivity of both betweenness and CPL to
removal of intermodular hubs is consistent with the notion that the
human interactome is modular with intermodular hubs connecting
functional modules that are comprised of intramodular hubs.
Next, we asked whether hub types display characteristic biochemical

features. We found that intermodular hubs were larger than intra-
modular hub proteins (Mann-Whitney U-test, P o 0.005, Supple-
mentary Fig. 3a online). Analysis of domain numbers (modularity)
and size (globularity) revealed intermodular hubs have more domains
compared to a randomized distribution, whereas intramodular hubs
have fewer domains than expected by chance (P o 0.05 and P o 0.01
respectively, Fig. 2a). Conversely, intramodular hubs have greater
globularity (domain size) and intermodular hubs less (P o 0.05 and
P o 0.01, respectively, Fig. 2b). Linear motifs (that is, post-transla-
tional modifications and short binding motifs15) are over- and under-
represented in intermodular and intramodular hubs, respectively
(P o 0.005, Fig. 2c; Supplementary Fig. 3b).
We then explored domain types in the different hub classes. Cell

signaling domains (as defined by the SMART database16) were
enriched in intermodular hubs (sign test, P o 0.001), whereas
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Figure 1 Evidence of dynamic network modularity in the human
interactome. (a) The probability density of the average PCC of co-expression
for human hub proteins with their interactors across 79 human tissues (red
line) is compared to randomized data (dashed black line). (b) Same as (a)
but only using human hub proteins conserved in yeast (red line) compared
to randomized data (dashed black line). (c) Network betweenness as a
function of removing equivalent numbers of intermodular or intramodular
hubs. (d) Characteristic path length of the network as a function of removing
equivalent numbers of intermodular or intramodular hubs.
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globularity (sequence length of domains) found in observed intermodular or
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domains (top panel, orange bars) or non-signaling domains (bottom panel, green bars), as indicated. A frequency of 1 indicates domains are found exclusively
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L’effetto della rimozione in silico degli hubs intermodulari 
dimostra la loro importanza nella connettività globale della rete
(valutata misurando due indici di connettività: betweeness e 
shortest path) 

Intermodular hubs have been proposed to be critical for global
network connectivity7. We tested this by systematically removing
either intermodular or intramodular hubs from the interaction net-
work and analyzing the number of paths between nodes using a
topological measure known as ‘betweenness’13. Betweenness measures
information flow through networks, with high betweenness reflecting
multiple paths between nodes and low betweenness few paths. In a
biological context, betweenness measures the ways in which signals
can pass through the interaction network. Betweenness was more
strongly affected by removing inter- rather than intramodular hubs
(Fig. 1c). Another topological measure of global network connectivity
is the characteristic path length (CPL), which is the average of the

shortest path between all nodes in a network14. Systematic removal of
intermodular hubs increased CPL to a threshold beyond which CPL
rapidly collapsed due to splintering of the large network into small
subnetworks (Fig. 1d). In contrast, intramodular hub removal only
increased CPL. The greater sensitivity of both betweenness and CPL to
removal of intermodular hubs is consistent with the notion that the
human interactome is modular with intermodular hubs connecting
functional modules that are comprised of intramodular hubs.
Next, we asked whether hub types display characteristic biochemical

features. We found that intermodular hubs were larger than intra-
modular hub proteins (Mann-Whitney U-test, P o 0.005, Supple-
mentary Fig. 3a online). Analysis of domain numbers (modularity)
and size (globularity) revealed intermodular hubs have more domains
compared to a randomized distribution, whereas intramodular hubs
have fewer domains than expected by chance (P o 0.05 and P o 0.01
respectively, Fig. 2a). Conversely, intramodular hubs have greater
globularity (domain size) and intermodular hubs less (P o 0.05 and
P o 0.01, respectively, Fig. 2b). Linear motifs (that is, post-transla-
tional modifications and short binding motifs15) are over- and under-
represented in intermodular and intramodular hubs, respectively
(P o 0.005, Fig. 2c; Supplementary Fig. 3b).
We then explored domain types in the different hub classes. Cell

signaling domains (as defined by the SMART database16) were
enriched in intermodular hubs (sign test, P o 0.001), whereas
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Figure 2 Structural and functional features of intermodular and
intramodular hubs. (a) Mean modularity (number of different domains/
protein) from observed intermodular hubs (red line) or intramodular hubs
(blue line) versus a distribution of randomized samples (black). (b) Mean
globularity (sequence length of domains) found in observed intermodular or
intramodular hubs compared to randomized distributions. (c) Mean number of experimentally validated linear motifs and phosphosites from the ELM and
Phospho-ELM database in intermodular or intramodular hubs compared to randomized distributions. (d) Domain distribution between intermodular hubs and
intramodular hubs. The frequency of individual domains in intermodular hubs minus their frequency in intramodular hubs was plotted for each of the signaling
domains (top panel, orange bars) or non-signaling domains (bottom panel, green bars), as indicated. A frequency of 1 indicates domains are found exclusively
in intermodular hubs, whereas a frequency of –1 indicates exclusively intramodular hubs. Note that to retain legibility only a fraction of nonsignaling domains
are labeled.
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Betweeness Average shortest path



Topological network analysis. Betweeness and shortest 
path of networks were calculated using algorithms 
implemented by the tYNA web interface. When 
assessing network robustness to hub removal, an 
equivalent number of intermodular and intramodular
hubs were removed from the network in order of 
descending clustering coefficient. 

Yip, K.Y., Yu, H., Kim, P.M., Schultz, M. & Gerstein, M. 
The tYNA platform for comparative interactomics: a 
web tool for managing, comparing and mining multiple 
networks. Bioinformatics 22, 2968–2970 (2006). 

tYNA = topnet-like Yale Network



2. Evaluation of the importance of hubs in PPI networks

Higher dependency of betweeness and shortest path on the 
removal of intermodular hubs suggests that: 

1. Human interactome is modular

2. Intermodular hubs connect functional modules controlled by
intramodular hubs

3. Intermodular hubs maintain network architecture



3. Characterization of hubs in cancer

Genes that encode for intermodular hubs are more frequently 
associated with entries related with cancer in OMIM database 
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3. Characterization of hubs in cancer
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Genes that encode for intermodular hubs are more frequently 
associated with translocations/fusions in OMIM database 



3. Characterization of hubs in cancer

The results obtained from OMIM suggest that 
intermodular hubs are more important in cancer 
comparing to intramodular hubs

Question: are alterations in modularity present in PPI 
networks in cancer?

We need data from patients with cancer!



La prognosi (dal greco: pro-, "prima" + gnòsis, "conoscere, 
sapere") è un giudizio di previsione sul probabile andamento
della malattia. Viene formulata dal medico una volta fatta la 
diagnosi, prendendo in considerazione le condizioni del malato, 
le possibilità terapeutiche, le possibili complicazioni o le 
condizioni ambientali.

Prognosis: prediction of the probable course and outcome of a
disease.



3. Characterization of hubs in cancer

Pattern of Expression of Genes Used 
to Determine the Prognosis and 
Clinical Characteristics of 295 Patients
with Breast Cancer
(van de Vijver et al., 2002) 

(studio precedente effettuato su
295 pazienti con cancro al seno
che identifica i geni che predicono
la sopravvivenza (esito favorevole
o sfavorevole)

 

GENE-EXPRESSION SIGNATURE AS A PREDICTOR OF SURVIVAL IN BREAST CANCER
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Nel panel B viene mostrato il tempo fino alla
prima metastasi (in rosso) e il tempo del follow 
up (in blu)
Nel panel C sono evidenziati i pazienti
con metastasi linfonodale o in altri organi (a 
distanza) o deceduti



Explanation of previous slide

Pattern of Expression of Genes Used to Determine the Prognosis and Clinical 
Characteristics of 295 Patients with Breast Cancer.
Panel A shows the pattern of expression of the 70 marker genes (also referred to 
as prognosis-classifier genes) in a series of 295 consecutive patients with breast 
carcinomas. Each row represents the prognostic profile of the 70 marker genes for 
one tumor, and each column represents the relative level of expression of one 
gene. The tumors are numbered from 1 to 295 on the y axis, and the genes are 
numbered from 1 to 70 on the x axis. Red indicates a high level of expression of 
messenger RNA (mRNA) in the tumor, as compared with the reference level of 
mRNA, and green indicates a low level of expression. The dotted line is the 
previously determined threshold between a good-prognosis signature and a poor-
prognosis signature. Tumors are rank-ordered according to their correlation with 
the previously determined average profile in tumors from patients with a good 
prognosis. Panel B shows the time in years to distant metastases as a first event 
for those in whom this occurred, and the total duration of follow-up for all other 
patients. Panel C shows the lymph-node status (blue marks indicate lymph-node–
positive disease, and white lymph-node–negative disease), the number of patients 
with distant metastases as a first event (blue marks), and the number of patients 
who died (blue marks).
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Supplemental Figure 7. Schematic of dynamic network modularity associated with breast 

cancer outcome. Hypothetical gene expression patterns are shown for two hubs (H1 and 

H2), each with 5 partners, as indicated. Relative expression for these 12 genes in 6 

hypothetical patients, 3 with good prognosis and 3 with poor prognosis is shown (grey 

scale). The correlation of expression of each partner and its hub in the patient groups is 

shown by edge colour according to the coloured gradient. In this example, H2 shows a 

difference in average PCC as a function of disease outcome, whereas H1 does not.  

Nature Biotechnology: doi: 10.1038/nbt.1522

3. Characterization of hubs in cancer

Mean PCCs (co-expresion) between hubs and their interactors in 
patients with good versus poor prognosis

Example of analysis



Explanation of previous slide

Schematic of dynamic network modularity associated with breast cancer 
outcome. Hypothetical gene expression patterns are shown for two hubs (H1 and 
H2), each with 5 partners, as indicated. Relative expression for these 12 genes in 6 
hypothetical patients, 3 with good prognosis and 3 with poor prognosis is shown 
(grey scale). The correlation of expression of each partner and its hub in the patient 
groups is shown by edge colour according to the coloured gradient. In this 
example, H2 shows a difference in average PCC as a function of disease outcome, 
whereas H1 does not.



nonsignaling domains were evenly distributed between the hub types
(Fig. 2d). For example, tyrosine kinase, PDZ and Ga domains were
found predominantly or exclusively in intermodular hubs (Fig. 2d).
The two hub types have similar degree distributions (that is, number
of interactions per hub; Supplementary Fig. 4 online), indicating that
the biochemical attributes of hub proteins are an inherent property of
the hub type and are not a function of the number of interacting
partners. Taken together, these results indicate that intra- and inter-
modular hubs display distinctive structural characteristics consistent
with their roles in organizing communication and function of
dynamic protein networks.
To explore this in detail we examined the well-characterized RAS

subnetwork. RAS behaves as an intramodular hub, with many highly
correlated regulatory partners, such as RALGDS and SOS (Supple-
mentary Fig 5a online). In contrast, partners that employ RAS as an
effector (that is, Insulin receptor adaptor protein, IRS1 (ref. 17)) or a
regulator (that is, BRAF17) tended to be
intermodular. The latter is connected to a
large cluster of intramodular transcription
factors, such as NFkB and p53. Also notable
is that connections between the RAS module
and the downstream intramodular cluster
occur almost exclusively via intermodular
hubs. This suggests a modular assembly of
signaling networks with intermodular hubs
organizing the interconnectivity of functional
modules such as RAS and the downstream
RAS transcriptional effectors.
During tumor progression, rewiring of sig-

naling networks drives phenotypic alterations
while maintaining the robustness of the net-
work8, suggesting that there may be differ-
ences in hub-type association with cancer.
We queried Online Mendelian Inheritance in
Man (OMIM)18, the census of cancer genes19,
and oncogenic translocations and found that
mutations of intermodular hubs were asso-
ciated with cancer phenotypes more fre-
quently than those of intramodular hubs
(Fisher’s exact test, P o 0.05, Supplementary
Figs. 5b,c and 6 online). As intermodular
hubs regulate the global functions of modular
networks, these results suggest that alterations
in network modularity may occur in cancer.
To investigate this we analyzed a well-

described cohort of sporadic, nonfamilial
breast cancer patients20. We first looked for
significant differences in the average PCC of
hub proteins and their interacting partners in
patients who were disease free after extended
follow-up (hereafter referred to as ‘good out-
come’) and those who died of disease (‘poor
outcome’) (Supplementary Fig. 7 online).
This revealed 256 hubs that displayed altered
PCC as a function of disease outcome. One
such hub was BRCA1, a protein that is
mutated in a subset of familial breast cancers.
The expression of BRCA1 was strongly cor-
related with the expression of its partners in
tumors from surviving patients, but not well
correlated with their expression in tumors

from poor-outcome patients (Fig. 3a). In contrast, the transcription
factor Sp1, which shares some interacting partners with BRCA1, was
not significantly changed. Of the BRCA1 partners highly correlated in
good outcome tumors, both MRE11 and BRCA2 were notable as they
are members of the BRCA1-associated genome surveillance complex
(BASC) and are misregulated in poor prognosis breast cancer21,22. Our
results suggest that disorganization of the BASC by loss of coordinated
co-expression of components is associated with poor outcome.
Analysis of interactions between the 256 hub proteins revealed that

they form an interconnected network (Fig. 3b). Notably, we did not
identify hubs that were themselves significantly up or downregulated
in the good versus poor outcome groups, but rather we identified
hubs that had altered PCC of expression between outcome groups
(Supplementary Fig. 7 ). Of the 256 hubs identified in our study,
only 23% (59 hubs) showed significantly altered expression in our
cohort when analyzed using ‘significance analysis of microarrays’23.
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Figure 3 Differences in dynamic network properties in breast cancer tumors. (a) Network of the
interacting partners of BRACA1 and SP1. BRCA1 and its interactors (e.g., BRCA2 and MRE11, as
indicated) are highly ordered (green edges indicate correlated expression between protein pairs) in
the surviving patients, whereas that organization is lost in patients who die of disease. Interactions
involving Sp1 are not significantly altered. (b) Shown are all hubs (red nodes) that have, as a function
of patient outcome, significantly different correlation of co-expression with their partners. Black edges
connect hubs that have direct protein-protein interactions. Note that most hubs are components of a
an interconnected network. The network includes many functional groups known to be misregulated in
breast cancer pathogenesis (highlighted in legend). Inset shows a subnetwork focused on SRC and its
interactors together with GRB2 and SHC1. Edge colors represent the correlation between SRC and each
of its partners, while node colors represent changes in gene expression between outcome groups. Black
edges indicate interactions not involving SRC. Note that while SRC is not significantly differently
expressed between patient groups, it is a significant predictor hub because of differences in the
coordinated co-expression of SRC and many of its partners.
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3. Characterization of hubs in cancer

The analysis revealed 256 hubs that displayed altered PCC as 
a function of disease outcome.
Example: the BRCA1 hub is strongly coexpressed in patients 
with good prognosis (green edges), whereas is less coexpressed
in patients with poor prognosis (many red edges)



Of the BRCA1 partners highly correlated in good 
outcome tumors, both MRE11 and BRCA2 were 
notable as they are members of the BRCA1-
associated genome surveillance complex (BASC) 
and are misregulated in poor prognosis breast 
cancer.

The results suggest that disorganization of the 
BASC by loss of coordinated co-expression of 
components is associated with poor outcome.



BRCA1 = Breast cancer type 1 susceptibility protein (BRCA1)
E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked 
polyubiquitin chains and plays a central role in DNA repair by facilitating cellular 
responses to DNA damage. The E3 ubiquitin-protein ligase activity is required 
for its tumor suppressor function. The BRCA1-BARD1 heterodimer 
coordinates a diverse range of cellular pathways such as DNA damage repair, 
ubiquitination and transcriptional regulation to maintain genomic stability.
Regulates centrosomal microtubule nucleation. Required for normal cell cycle 
progression from G2 to mitosis.
BRCA1 partners such as both MRE11 and BRCA2 are members of the BRCA1-
associated genome surveillance complex (BASC). 

MRE11 = Double-strand break repair protein MRE11A
Alternative name: Meiotic recombination 11 homolog 1
Component of the MRN complex, which plays a central role in double-strand break 
repair, DNA recombination, maintenance of telomere integrity and meiosis.

BARD-1 (BRCA1-associated RING domain protein 1) is a protein that in humans is 
encoded by the BARD1 gene. The BARD1-BRCA1 interaction is essential for 
BRCA1 stability. Mutations in the BARD1 protein that affect its structure appear in 
many breast, ovarian, and uterine cancers, suggesting the mutations disable 
BARD1's tumor suppressor function.



BRCA1 and BRCA2 are human genes that produce tumor 
suppressor proteins. These proteins help repair
damaged DNA ensuring the stability of the genetic material. 
If mutated, cells are more likely to develop additional genetic
alterations that can lead to cancer.

Mutations in BRCA1 and BRCA2 increase the risk of female
breast and ovarian cancers.
Men with BRCA2 mutations are at increased risk of breast 
cancer and prostate cancer.

Both men and women with harmful BRCA1 or BRCA2 
mutations are at increased risk of pancreatic cancer.  

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046047&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046742&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045693&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046657&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045671&version=Patient&language=English


nonsignaling domains were evenly distributed between the hub types
(Fig. 2d). For example, tyrosine kinase, PDZ and Ga domains were
found predominantly or exclusively in intermodular hubs (Fig. 2d).
The two hub types have similar degree distributions (that is, number
of interactions per hub; Supplementary Fig. 4 online), indicating that
the biochemical attributes of hub proteins are an inherent property of
the hub type and are not a function of the number of interacting
partners. Taken together, these results indicate that intra- and inter-
modular hubs display distinctive structural characteristics consistent
with their roles in organizing communication and function of
dynamic protein networks.
To explore this in detail we examined the well-characterized RAS

subnetwork. RAS behaves as an intramodular hub, with many highly
correlated regulatory partners, such as RALGDS and SOS (Supple-
mentary Fig 5a online). In contrast, partners that employ RAS as an
effector (that is, Insulin receptor adaptor protein, IRS1 (ref. 17)) or a
regulator (that is, BRAF17) tended to be
intermodular. The latter is connected to a
large cluster of intramodular transcription
factors, such as NFkB and p53. Also notable
is that connections between the RAS module
and the downstream intramodular cluster
occur almost exclusively via intermodular
hubs. This suggests a modular assembly of
signaling networks with intermodular hubs
organizing the interconnectivity of functional
modules such as RAS and the downstream
RAS transcriptional effectors.
During tumor progression, rewiring of sig-

naling networks drives phenotypic alterations
while maintaining the robustness of the net-
work8, suggesting that there may be differ-
ences in hub-type association with cancer.
We queried Online Mendelian Inheritance in
Man (OMIM)18, the census of cancer genes19,
and oncogenic translocations and found that
mutations of intermodular hubs were asso-
ciated with cancer phenotypes more fre-
quently than those of intramodular hubs
(Fisher’s exact test, P o 0.05, Supplementary
Figs. 5b,c and 6 online). As intermodular
hubs regulate the global functions of modular
networks, these results suggest that alterations
in network modularity may occur in cancer.
To investigate this we analyzed a well-

described cohort of sporadic, nonfamilial
breast cancer patients20. We first looked for
significant differences in the average PCC of
hub proteins and their interacting partners in
patients who were disease free after extended
follow-up (hereafter referred to as ‘good out-
come’) and those who died of disease (‘poor
outcome’) (Supplementary Fig. 7 online).
This revealed 256 hubs that displayed altered
PCC as a function of disease outcome. One
such hub was BRCA1, a protein that is
mutated in a subset of familial breast cancers.
The expression of BRCA1 was strongly cor-
related with the expression of its partners in
tumors from surviving patients, but not well
correlated with their expression in tumors

from poor-outcome patients (Fig. 3a). In contrast, the transcription
factor Sp1, which shares some interacting partners with BRCA1, was
not significantly changed. Of the BRCA1 partners highly correlated in
good outcome tumors, both MRE11 and BRCA2 were notable as they
are members of the BRCA1-associated genome surveillance complex
(BASC) and are misregulated in poor prognosis breast cancer21,22. Our
results suggest that disorganization of the BASC by loss of coordinated
co-expression of components is associated with poor outcome.
Analysis of interactions between the 256 hub proteins revealed that

they form an interconnected network (Fig. 3b). Notably, we did not
identify hubs that were themselves significantly up or downregulated
in the good versus poor outcome groups, but rather we identified
hubs that had altered PCC of expression between outcome groups
(Supplementary Fig. 7 ). Of the 256 hubs identified in our study,
only 23% (59 hubs) showed significantly altered expression in our
cohort when analyzed using ‘significance analysis of microarrays’23.
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Figure 3 Differences in dynamic network properties in breast cancer tumors. (a) Network of the
interacting partners of BRACA1 and SP1. BRCA1 and its interactors (e.g., BRCA2 and MRE11, as
indicated) are highly ordered (green edges indicate correlated expression between protein pairs) in
the surviving patients, whereas that organization is lost in patients who die of disease. Interactions
involving Sp1 are not significantly altered. (b) Shown are all hubs (red nodes) that have, as a function
of patient outcome, significantly different correlation of co-expression with their partners. Black edges
connect hubs that have direct protein-protein interactions. Note that most hubs are components of a
an interconnected network. The network includes many functional groups known to be misregulated in
breast cancer pathogenesis (highlighted in legend). Inset shows a subnetwork focused on SRC and its
interactors together with GRB2 and SHC1. Edge colors represent the correlation between SRC and each
of its partners, while node colors represent changes in gene expression between outcome groups. Black
edges indicate interactions not involving SRC. Note that while SRC is not significantly differently
expressed between patient groups, it is a significant predictor hub because of differences in the
coordinated co-expression of SRC and many of its partners.
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3. Characterization of hubs in cancer
Differences in the dynamic properties of cancer networks

252 hubs had altered co-expression in patients with poor prognosis and 
they form an interconnected network (In red –right- nodes differently 
coexpresed in patients with poor prognosis)



SHC1 (Src homology 2 domain containing) transforming protein 1.
Signaling adapter protein that couples activated growth factor receptors to 
signaling pathways (couples activated receptor tyrosine kinases to Ras pathway)

SRC = v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian)
Alternative names: tyrosine-protein kinase SRC; Proto-oncogene c-Src
Src kinases are key upstream mediators of PI3-K and MAPK signaling pathways, and have 
been shown to have important roles in cell proliferation, migration and survival.



Growth factor receptor-bound protein 2 (Grb2) is an 
adaptor protein involved in signal transduction/cell 
communication. 
The protein encoded by this gene binds receptors such as 
the epidermal growth factor receptor. Grb2 function is 
involved in developmental processes in various organisms 
and transformation and proliferation of various cell 
types. Targeted gene disruption of Grb2 in mouse is lethal 
at an early embryonic stage. 
Grb2 is best known for its ability to link the epidermal 
growth factor receptor tyrosine kinase to the activation 
of Ras and its downstream kinases, ERK1,2.

http://en.wikipedia.org/wiki/Adaptor_protein
http://en.wikipedia.org/wiki/Signal_transduction
http://en.wikipedia.org/wiki/Cell_communication
http://en.wikipedia.org/wiki/Embryo
http://en.wikipedia.org/wiki/Embryo
http://en.wikipedia.org/wiki/Epidermal_growth_factor_receptor
http://en.wikipedia.org/wiki/Tyrosine_kinase
http://en.wikipedia.org/wiki/Ras_(protein)
http://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase


3. Characterization of hubs in cancer

Differences in the dynamic properties of cancer networks:

The analysis of the hubs with altered PCC shows that:

- The 252 hubs with altered co-expression form an 

interconnected network

- The majority of hubs (77%) show a significant change in 

co-expression with their neighbors (thus of connectivity)

in patients with poor outcome 

The data show a network dynamic change.
Ex: SRC (inset). 

- The network of 252 hubs include molecules such as MAP3K1, 

GRB2, SHC, SRC, BRCA1, MRE11, estrogen receptor 1

(ESR1) that were incriminated in the pathogenesis of cancer. 



4. Prediction of cancer evolution through  dynamic 
properties of PPI networks

First step: computation of the relative expression of hubs with each of 
their interacting partners, determined for which hubs the relative 
expression differed significantly between patients who survived versus
those who died from disease
Second step: application of “affinity propagation clustering” algoritm
to clusterize patients with similar data (L’algoritmo ha permesso di 
assegnare un valore di probabilità di prognosi in base alla signature 
molecolare).

For example, no significant difference in the expression level of the
oncogene product SRC was observed between groups (Fig. 3b, inset);
however, the coordinated co-expression of SRC and its regulators or
effectors (see inset Fig. 3b) was clearly affected. Unbiased analysis of
the 256 hubs in this aberrant network demonstrated over-representa-
tion in literature (Fig. 4, Fisher’s exact test, Po0.001) and microarray
studies20,24–26 of breast cancer (Supplementary Fig. 8 online, Fisher’s
exact test, Po0.02) when compared to a similar network that did not
change significantly between groups. These hubs include signaling
proteins (MAP3K1, GRB2, SHC and SRC), an estrogen receptor
(ESR1) and DNA damage response proteins (BRCA1, RAD51,
MRE11). Single-nucleotide polymorphisms in MAP3K1 are associated
with breast cancer susceptibility27. Thus, there are changes in dynamic
network modularity that are associated with poor outcome in breast
cancer, and these may provide a prognostic signature in breast cancer.
To develop a prognostic signature that could be used to classify

gene expression profiles from individual patients, we computed the
relative expression of hubs with each of their interacting partners,
determined for which hubs the relative expression differed signifi-
cantly between patients who survived versus those who died from
disease, and then employed affinity propagation clustering28. Affinity
propagation is a clustering algorithm that takes similarity measures
between data points and iteratively refines them until there are high
quality exemplars. Clustering of test patients using affinity propaga-
tion allowed us to assign a probability of poor prognosis for each
patient (Supplementary Methods and Supplementary Fig. 9 online).
We used a fivefold cross-validation strategy in which the hub selection
process was incorporated on the training set within the cross-
validation loop to avoid overfitting and assessed performance using
receiver operator characteristic (ROC) curves. This revealed a
typical area under the curve (AUC) of 0.711 (Fig. 4a) and accuracy,
sensitivity and specificity of 76%, 86% and 81%, respectively.
This compared favorably with the retrospective29 or prospective30

performance of commercially available genomic breast cancer

diagnostics (53%, 41% and 68% in ref. 30 and 70%, 71% and 67%
in ref. 29 for predicting 10-year survival31).
We also assessed performance using interactomes in which hubs

were randomly removed. We observed that the performance of the
classifier was reduced as hubs were removed (Fig. 4d), indicating that
our accuracy may be limited by the interactome density. As current
interactomes are likely incomplete and contain biases32, further
interactome mapping by systematic approaches may lead to improved
prognostic performance.
To test the ability of the classifier to predict survival, we grouped

patients using the poor outcome probabilities. The threshold for
probability of prognosis was set to 0.4 as this consistently yielded
the highest accuracy of prediction. Analysis of these two groups
revealed significantly different 5-year survival (Mantel-Cox Log
Rank test, nominal P o 0.001). Only 48% of patients possessing
the poor-prognosis modularity signature survived for 45 years
(Fig. 4b). Conversely, 85% of those with a good prognostic signature
survived for 5 years. The average overall error rate of prognosis using
the test-set data at this prognostic cutoff was 29.1%.
We next asked whether prognostic accuracy could be improved by

incorporating clinical data (patient age, tumor stage and tumor
grade). A logistic regression model that incorporated these variables
along with network probabilities resulted in better performance (AUC
¼ 0.784) (Fig. 4a) and enhanced prognostic classification (error rate,
25%) (Fig. 4b). Clinical covariates alone showed similar performance
as the network probability score (AUC ¼ 0.701, Fig. 4a). We also
repeated these analyses using expression data from the TransBIG30

cohort of breast cancer patients and observed similar, if not better,
performance (AUC ¼ 0.718–0.827; Supplementary Fig. 9a online)
and Kaplan-Meier survival curves. Thus, 480% of predicted good-
prognosis patients survived410 years compared witho35% of those
in the poor-prognosis group (Supplementary Fig. 9b). These results
demonstrate that the molecular changes of the tumor that are
captured by measuring changes in the network modularity of tumor
interactomes are significant and independent predictors of patient
disease outcome and suggest that measuring these changes may
improve the predictive value of prognostic indicators already used
in the clinic.
Previous approaches have employed network information to

improve classification performance of gene signatures by extracting
co-expressed pathways (that is, functional modules) and then using
these pathways to assess cancer outcome1. In contrast, we have

1.0

0.8

0.6

S
en

si
tiv

ity

0.4

0.2

0

1.0

0.8

0.9

0.6

0.7

Fr
ac

tio
n 

of
 p

at
ie

nt
 s

ur
vi

va
l

0.4

0 2 4 6 8 10

0.5

0 0.2 0.4
1-specificity

AUC

0.711
0.701

0.5000.784

Network
probability

Network
probability
alone

Clinical
covariates
alone

Full
model

Good
prognosis

Poor
prognosis

Good
prognosis

Poor
prognosis

Random
probability

Hubs
included

in prediction

Hubs
excluded

in prediction

Network
+ clinical
covariate
probability

AUC

Survival (years)
0.6 0.8 1.0

6
P < 0.001

3

0

P
er

ce
nt

 b
re

as
t c

an
ce

r
pu

bl
ic

at
io

ns
/to

ta
l

pu
bl

ic
at

io
ns

 fo
r g

en
e 

(1
0–2

)

a

c d

b

Network used in this study 
(30,533 interaction)

0.72

A
U

C

0.70

0.68

0 5 10
No. of interactions removed (103)

15 20 25

0.66

0.64

Figure 4 Dynamic network properties predict breast cancer outcome.
(a) ROC curve of the probabilities for prognostic group membership from
the affinity propagation clustering of patient dynamic network properties
using fivefold cross-validation runs. Outcome prediction performances are
shown for network probabilities alone (blue line), TNM tumor classifications
alone (yellow line) and combining network properties of each tumor and
TNM tumor classifications (red line). Random division of patients is shown
with the black diagonal). (b) Kaplan-Meier disease-free survival curves.
Patients were grouped into good and poor prognostic groups based on a
fivefold cross-validation analysis of patient data. Patient survival is plotted
for network probability alone (green and orange lines, as indicated) or
network probability controlling for clinical covariates (red and blue lines).
(c) Genes encoding hub proteins that are included in the prediction
algorithm are cited significantly more frequently in the breast cancer
literature than excluded hubs. (d) Algorithm performance declines as a
function of decreasing interactome size. Interactions were randomly removed
from the current interactome as indicated and performance of the dynamic
network modularity algorithm assessed. Average AUC (+s.d.) at each of the
reduced interactome sizes is plotted (black squares) and was calculated
from 5-fold cross-validation runs performed in triplicate.
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For example, no significant difference in the expression level of the
oncogene product SRC was observed between groups (Fig. 3b, inset);
however, the coordinated co-expression of SRC and its regulators or
effectors (see inset Fig. 3b) was clearly affected. Unbiased analysis of
the 256 hubs in this aberrant network demonstrated over-representa-
tion in literature (Fig. 4, Fisher’s exact test, Po0.001) and microarray
studies20,24–26 of breast cancer (Supplementary Fig. 8 online, Fisher’s
exact test, Po0.02) when compared to a similar network that did not
change significantly between groups. These hubs include signaling
proteins (MAP3K1, GRB2, SHC and SRC), an estrogen receptor
(ESR1) and DNA damage response proteins (BRCA1, RAD51,
MRE11). Single-nucleotide polymorphisms in MAP3K1 are associated
with breast cancer susceptibility27. Thus, there are changes in dynamic
network modularity that are associated with poor outcome in breast
cancer, and these may provide a prognostic signature in breast cancer.
To develop a prognostic signature that could be used to classify

gene expression profiles from individual patients, we computed the
relative expression of hubs with each of their interacting partners,
determined for which hubs the relative expression differed signifi-
cantly between patients who survived versus those who died from
disease, and then employed affinity propagation clustering28. Affinity
propagation is a clustering algorithm that takes similarity measures
between data points and iteratively refines them until there are high
quality exemplars. Clustering of test patients using affinity propaga-
tion allowed us to assign a probability of poor prognosis for each
patient (Supplementary Methods and Supplementary Fig. 9 online).
We used a fivefold cross-validation strategy in which the hub selection
process was incorporated on the training set within the cross-
validation loop to avoid overfitting and assessed performance using
receiver operator characteristic (ROC) curves. This revealed a
typical area under the curve (AUC) of 0.711 (Fig. 4a) and accuracy,
sensitivity and specificity of 76%, 86% and 81%, respectively.
This compared favorably with the retrospective29 or prospective30

performance of commercially available genomic breast cancer

diagnostics (53%, 41% and 68% in ref. 30 and 70%, 71% and 67%
in ref. 29 for predicting 10-year survival31).
We also assessed performance using interactomes in which hubs

were randomly removed. We observed that the performance of the
classifier was reduced as hubs were removed (Fig. 4d), indicating that
our accuracy may be limited by the interactome density. As current
interactomes are likely incomplete and contain biases32, further
interactome mapping by systematic approaches may lead to improved
prognostic performance.
To test the ability of the classifier to predict survival, we grouped

patients using the poor outcome probabilities. The threshold for
probability of prognosis was set to 0.4 as this consistently yielded
the highest accuracy of prediction. Analysis of these two groups
revealed significantly different 5-year survival (Mantel-Cox Log
Rank test, nominal P o 0.001). Only 48% of patients possessing
the poor-prognosis modularity signature survived for 45 years
(Fig. 4b). Conversely, 85% of those with a good prognostic signature
survived for 5 years. The average overall error rate of prognosis using
the test-set data at this prognostic cutoff was 29.1%.
We next asked whether prognostic accuracy could be improved by

incorporating clinical data (patient age, tumor stage and tumor
grade). A logistic regression model that incorporated these variables
along with network probabilities resulted in better performance (AUC
¼ 0.784) (Fig. 4a) and enhanced prognostic classification (error rate,
25%) (Fig. 4b). Clinical covariates alone showed similar performance
as the network probability score (AUC ¼ 0.701, Fig. 4a). We also
repeated these analyses using expression data from the TransBIG30

cohort of breast cancer patients and observed similar, if not better,
performance (AUC ¼ 0.718–0.827; Supplementary Fig. 9a online)
and Kaplan-Meier survival curves. Thus, 480% of predicted good-
prognosis patients survived410 years compared witho35% of those
in the poor-prognosis group (Supplementary Fig. 9b). These results
demonstrate that the molecular changes of the tumor that are
captured by measuring changes in the network modularity of tumor
interactomes are significant and independent predictors of patient
disease outcome and suggest that measuring these changes may
improve the predictive value of prognostic indicators already used
in the clinic.
Previous approaches have employed network information to

improve classification performance of gene signatures by extracting
co-expressed pathways (that is, functional modules) and then using
these pathways to assess cancer outcome1. In contrast, we have
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Figure 4 Dynamic network properties predict breast cancer outcome.
(a) ROC curve of the probabilities for prognostic group membership from
the affinity propagation clustering of patient dynamic network properties
using fivefold cross-validation runs. Outcome prediction performances are
shown for network probabilities alone (blue line), TNM tumor classifications
alone (yellow line) and combining network properties of each tumor and
TNM tumor classifications (red line). Random division of patients is shown
with the black diagonal). (b) Kaplan-Meier disease-free survival curves.
Patients were grouped into good and poor prognostic groups based on a
fivefold cross-validation analysis of patient data. Patient survival is plotted
for network probability alone (green and orange lines, as indicated) or
network probability controlling for clinical covariates (red and blue lines).
(c) Genes encoding hub proteins that are included in the prediction
algorithm are cited significantly more frequently in the breast cancer
literature than excluded hubs. (d) Algorithm performance declines as a
function of decreasing interactome size. Interactions were randomly removed
from the current interactome as indicated and performance of the dynamic
network modularity algorithm assessed. Average AUC (+s.d.) at each of the
reduced interactome sizes is plotted (black squares) and was calculated
from 5-fold cross-validation runs performed in triplicate.
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Full model = network probabilities integrated with 
clinical data: age, tumor stage and tumor grade using a logistic
regression model



In statistics, logistic regression (sometimes called 
the logistic model or logit model) is used for 
prediction of the probability of occurrence of an 
event by fitting data to a logit function- logistic curve.
It is a generalized linear model used for binomial 
regression. Like many forms of regression analysis, it 
makes use of several predictor variables that may 
be either numerical or categorical. For example, the 
probability that a person has a heart attack within a 
specified time period might be predicted from 
knowledge of the person's age, sex and body mass 
index. Logistic regression is used extensively in 
the medical and social sciences fields, as well as 
marketing applications such as prediction of a 
customer's propensity to purchase a product or cease 
a subscription.



The affinity clustering algoritm

Clustering by Passing Messages
Between Data Points
Brendan J. Frey* and Delbert Dueck

Clustering data by identifying a subset of representative examples is important for processing
sensory signals and detecting patterns in data. Such “exemplars” can be found by randomly
choosing an initial subset of data points and then iteratively refining it, but this works well only if
that initial choice is close to a good solution. We devised a method called “affinity propagation,”
which takes as input measures of similarity between pairs of data points. Real-valued messages are
exchanged between data points until a high-quality set of exemplars and corresponding clusters
gradually emerges. We used affinity propagation to cluster images of faces, detect genes in
microarray data, identify representative sentences in this manuscript, and identify cities that are
efficiently accessed by airline travel. Affinity propagation found clusters with much lower error than
other methods, and it did so in less than one-hundredth the amount of time.

Clustering data based on a measure of
similarity is a critical step in scientific
data analysis and in engineering sys-

tems. A common approach is to use data to
learn a set of centers such that the sum of
squared errors between data points and their
nearest centers is small. When the centers are
selected from actual data points, they are called
“exemplars.” The popular k-centers clustering
technique (1) begins with an initial set of ran-
domly selected exemplars and iteratively refines
this set so as to decrease the sum of squared
errors. k-centers clustering is quite sensitive to
the initial selection of exemplars, so it is usually
rerun many times with different initializations in
an attempt to find a good solution. However,
this works well only when the number of clus-
ters is small and chances are good that at least
one random initialization is close to a good
solution. We take a quite different approach
and introduce a method that simultaneously
considers all data points as potential exem-
plars. By viewing each data point as a node in
a network, we devised a method that recur-
sively transmits real-valued messages along
edges of the network until a good set of ex-
emplars and corresponding clusters emerges.
As described later, messages are updated on
the basis of simple formulas that search for
minima of an appropriately chosen energy
function. At any point in time, the magnitude
of each message reflects the current affinity
that one data point has for choosing another
data point as its exemplar, so we call our meth-
od “affinity propagation.” Figure 1A illus-
trates how clusters gradually emerge during
the message-passing procedure.

Affinity propagation takes as input a col-
lection of real-valued similarities between data
points, where the similarity s(i,k) indicates

how well the data point with index k is suited
to be the exemplar for data point i. When the
goal is to minimize squared error, each sim-
ilarity is set to a negative squared error (Eu-
clidean distance): For points xi and xk, s(i,k) =
−||xi − xk||

2. Indeed, the method described here
can be applied when the optimization criterion is
much more general. Later, we describe tasks
where similarities are derived for pairs of im-
ages, pairs of microarray measurements, pairs of
English sentences, and pairs of cities. When an
exemplar-dependent probability model is avail-
able, s(i,k) can be set to the log-likelihood of
data point i given that its exemplar is point k.
Alternatively, when appropriate, similarities
may be set by hand.

Rather than requiring that the number of
clusters be prespecified, affinity propagation
takes as input a real number s(k,k) for each data
point k so that data points with larger values
of s(k,k) are more likely to be chosen as ex-
emplars. These values are referred to as “pref-
erences.” The number of identified exemplars
(number of clusters) is influenced by the values
of the input preferences, but also emerges from
the message-passing procedure. If a priori, all
data points are equally suitable as exemplars, the
preferences should be set to a common value—
this value can be varied to produce different
numbers of clusters. The shared value could
be the median of the input similarities (resulting
in a moderate number of clusters) or their
minimum (resulting in a small number of
clusters).

There are two kinds of message exchanged
between data points, and each takes into ac-
count a different kind of competition. Mes-
sages can be combined at any stage to decide
which points are exemplars and, for every
other point, which exemplar it belongs to. The
“responsibility” r(i,k), sent from data point i to
candidate exemplar point k, reflects the ac-
cumulated evidence for how well-suited point
k is to serve as the exemplar for point i, taking
into account other potential exemplars for
point i (Fig. 1B). The “availability” a(i,k), sent

from candidate exemplar point k to point i,
reflects the accumulated evidence for how
appropriate it would be for point i to choose
point k as its exemplar, taking into account the
support from other points that point k should be
an exemplar (Fig. 1C). r(i,k) and a(i,k) can be
viewed as log-probability ratios. To begin
with, the availabilities are initialized to zero:
a(i,k) = 0. Then, the responsibilities are com-
puted using the rule

rði,kÞ ← sði,kÞ − max
k ′ s:t: k ′≠ k

faði,k ′Þ þ sði; k ′Þg

ð1Þ

In the first iteration, because the availabilities
are zero, r(i,k) is set to the input similarity
between point i and point k as its exemplar,
minus the largest of the similarities between
point i and other candidate exemplars. This
competitive update is data-driven and does not
take into account how many other points favor
each candidate exemplar. In later iterations,
when some points are effectively assigned to
other exemplars, their availabilities will drop
below zero as prescribed by the update rule
below. These negative availabilities will de-
crease the effective values of some of the input
similarities s(i,k′) in the above rule, removing
the corresponding candidate exemplars from
competition. For k = i, the responsibility r(k,k)
is set to the input preference that point k be
chosen as an exemplar, s(k,k), minus the largest
of the similarities between point i and all other
candidate exemplars. This “self-responsibility”
reflects accumulated evidence that point k is an
exemplar, based on its input preference tem-
pered by how ill-suited it is to be assigned to
another exemplar.

Whereas the above responsibility update
lets all candidate exemplars compete for own-
ership of a data point, the following availabil-
ity update gathers evidence from data points
as to whether each candidate exemplar would
make a good exemplar:

aði,kÞ ← min
n
0, rðk,kÞ þ

X

i′s:t: i′∉fi;kg
maxf0,rði′,kÞg

o

ð2Þ

The availability a(i,k) is set to the self-
responsibility r(k,k) plus the sum of the positive
responsibilities candidate exemplar k receives
from other points. Only the positive portions of
incoming responsibilities are added, because it
is only necessary for a good exemplar to explain
some data points well (positive responsibilities),
regardless of how poorly it explains other data
points (negative responsibilities). If the self-
responsibility r(k,k) is negative (indicating that
point k is currently better suited as belonging to
another exemplar rather than being an exem-
plar itself), the availability of point k as an
exemplar can be increased if some other points
have positive responsibilities for point k being
their exemplar. To limit the influence of strong
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Clustering by Passing Messages
Between Data Points
Brendan J. Frey* and Delbert Dueck

Clustering data by identifying a subset of representative examples is important for processing
sensory signals and detecting patterns in data. Such “exemplars” can be found by randomly
choosing an initial subset of data points and then iteratively refining it, but this works well only if
that initial choice is close to a good solution. We devised a method called “affinity propagation,”
which takes as input measures of similarity between pairs of data points. Real-valued messages are
exchanged between data points until a high-quality set of exemplars and corresponding clusters
gradually emerges. We used affinity propagation to cluster images of faces, detect genes in
microarray data, identify representative sentences in this manuscript, and identify cities that are
efficiently accessed by airline travel. Affinity propagation found clusters with much lower error than
other methods, and it did so in less than one-hundredth the amount of time.

Clustering data based on a measure of
similarity is a critical step in scientific
data analysis and in engineering sys-

tems. A common approach is to use data to
learn a set of centers such that the sum of
squared errors between data points and their
nearest centers is small. When the centers are
selected from actual data points, they are called
“exemplars.” The popular k-centers clustering
technique (1) begins with an initial set of ran-
domly selected exemplars and iteratively refines
this set so as to decrease the sum of squared
errors. k-centers clustering is quite sensitive to
the initial selection of exemplars, so it is usually
rerun many times with different initializations in
an attempt to find a good solution. However,
this works well only when the number of clus-
ters is small and chances are good that at least
one random initialization is close to a good
solution. We take a quite different approach
and introduce a method that simultaneously
considers all data points as potential exem-
plars. By viewing each data point as a node in
a network, we devised a method that recur-
sively transmits real-valued messages along
edges of the network until a good set of ex-
emplars and corresponding clusters emerges.
As described later, messages are updated on
the basis of simple formulas that search for
minima of an appropriately chosen energy
function. At any point in time, the magnitude
of each message reflects the current affinity
that one data point has for choosing another
data point as its exemplar, so we call our meth-
od “affinity propagation.” Figure 1A illus-
trates how clusters gradually emerge during
the message-passing procedure.

Affinity propagation takes as input a col-
lection of real-valued similarities between data
points, where the similarity s(i,k) indicates

how well the data point with index k is suited
to be the exemplar for data point i. When the
goal is to minimize squared error, each sim-
ilarity is set to a negative squared error (Eu-
clidean distance): For points xi and xk, s(i,k) =
−||xi − xk||

2. Indeed, the method described here
can be applied when the optimization criterion is
much more general. Later, we describe tasks
where similarities are derived for pairs of im-
ages, pairs of microarray measurements, pairs of
English sentences, and pairs of cities. When an
exemplar-dependent probability model is avail-
able, s(i,k) can be set to the log-likelihood of
data point i given that its exemplar is point k.
Alternatively, when appropriate, similarities
may be set by hand.

Rather than requiring that the number of
clusters be prespecified, affinity propagation
takes as input a real number s(k,k) for each data
point k so that data points with larger values
of s(k,k) are more likely to be chosen as ex-
emplars. These values are referred to as “pref-
erences.” The number of identified exemplars
(number of clusters) is influenced by the values
of the input preferences, but also emerges from
the message-passing procedure. If a priori, all
data points are equally suitable as exemplars, the
preferences should be set to a common value—
this value can be varied to produce different
numbers of clusters. The shared value could
be the median of the input similarities (resulting
in a moderate number of clusters) or their
minimum (resulting in a small number of
clusters).

There are two kinds of message exchanged
between data points, and each takes into ac-
count a different kind of competition. Mes-
sages can be combined at any stage to decide
which points are exemplars and, for every
other point, which exemplar it belongs to. The
“responsibility” r(i,k), sent from data point i to
candidate exemplar point k, reflects the ac-
cumulated evidence for how well-suited point
k is to serve as the exemplar for point i, taking
into account other potential exemplars for
point i (Fig. 1B). The “availability” a(i,k), sent

from candidate exemplar point k to point i,
reflects the accumulated evidence for how
appropriate it would be for point i to choose
point k as its exemplar, taking into account the
support from other points that point k should be
an exemplar (Fig. 1C). r(i,k) and a(i,k) can be
viewed as log-probability ratios. To begin
with, the availabilities are initialized to zero:
a(i,k) = 0. Then, the responsibilities are com-
puted using the rule

rði,kÞ ← sði,kÞ − max
k ′ s:t: k ′≠ k

faði,k ′Þ þ sði; k ′Þg

ð1Þ

In the first iteration, because the availabilities
are zero, r(i,k) is set to the input similarity
between point i and point k as its exemplar,
minus the largest of the similarities between
point i and other candidate exemplars. This
competitive update is data-driven and does not
take into account how many other points favor
each candidate exemplar. In later iterations,
when some points are effectively assigned to
other exemplars, their availabilities will drop
below zero as prescribed by the update rule
below. These negative availabilities will de-
crease the effective values of some of the input
similarities s(i,k′) in the above rule, removing
the corresponding candidate exemplars from
competition. For k = i, the responsibility r(k,k)
is set to the input preference that point k be
chosen as an exemplar, s(k,k), minus the largest
of the similarities between point i and all other
candidate exemplars. This “self-responsibility”
reflects accumulated evidence that point k is an
exemplar, based on its input preference tem-
pered by how ill-suited it is to be assigned to
another exemplar.

Whereas the above responsibility update
lets all candidate exemplars compete for own-
ership of a data point, the following availabil-
ity update gathers evidence from data points
as to whether each candidate exemplar would
make a good exemplar:

aði,kÞ ← min
n
0, rðk,kÞ þ

X

i′s:t: i′∉fi;kg
maxf0,rði′,kÞg

o

ð2Þ

The availability a(i,k) is set to the self-
responsibility r(k,k) plus the sum of the positive
responsibilities candidate exemplar k receives
from other points. Only the positive portions of
incoming responsibilities are added, because it
is only necessary for a good exemplar to explain
some data points well (positive responsibilities),
regardless of how poorly it explains other data
points (negative responsibilities). If the self-
responsibility r(k,k) is negative (indicating that
point k is currently better suited as belonging to
another exemplar rather than being an exem-
plar itself), the availability of point k as an
exemplar can be increased if some other points
have positive responsibilities for point k being
their exemplar. To limit the influence of strong

Department of Electrical and Computer Engineering,
University of Toronto, 10 King’s College Road, Toronto,
Ontario M5S 3G4, Canada.

*To whom correspondence should be addressed. E-mail:
frey@psi.toronto.edu

REPORTS

16 FEBRUARY 2007 VOL 315 SCIENCE www.sciencemag.org972

 o
n 

Ju
ne

 1
4,

 2
01

1
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

tion criterion of squared error. We used both
affinity propagation and k-centers clustering to
identify exemplars among 900 grayscale images
extracted from the Olivetti face database (3).
Affinity propagation found exemplars with
much lower squared error than the best of 100
runs of k-centers clustering (Fig. 2A), which
took about the same amount of computer time.
We asked whether a huge number of random
restarts of k-centers clustering could achieve the
same squared error. Figure 2B shows the error
achieved by one run of affinity propagation and
the distribution of errors achieved by 10,000
runs of k-centers clustering, plotted against the
number of clusters. Affinity propagation uni-
formly achieved much lower error in more than
two orders of magnitude less time. Another pop-
ular optimization criterion is the sum of ab-
solute pixel differences (which better tolerates
outlying pixel intensities), so we repeated the
above procedure using this error measure. Affin-
ity propagation again uniformly achieved lower
error (Fig. 2C).

Many tasks require the identification of ex-
emplars among sparsely related data, i.e., where
most similarities are either unknown or large
and negative. To examine affinity propagation in

this context, we addressed the task of clustering
putative exons to find genes, using the sparse
similarity matrix derived from microarray data
and reported in (4). In that work, 75,066 seg-
ments of DNA (60 bases long) corresponding to
putative exons were mined from the genome of
mouse chromosome 1. Their transcription levels
were measured across 12 tissue samples, and the
similarity between every pair of putative exons
(data points) was computed. The measure of
similarity between putative exons was based on
their proximity in the genome and the degree of
coordination of their transcription levels across
the 12 tissues. To account for putative exons
that are not exons (e.g., introns), we included an
additional artificial exemplar and determined the
similarity of each other data point to this “non-
exon exemplar” using statistics taken over the
entire data set. The resulting 75,067 × 75,067
similarity matrix (3) consisted of 99.73% sim-
ilarities with values of −∞, corresponding to
distant DNA segments that could not possibly
be part of the same gene. We applied affinity
propagation to this similarity matrix, but be-
cause messages need not be exchanged between
point i and k if s(i,k) = −∞, each iteration of
affinity propagation required exchanging mes-

sages between only a tiny subset (0.27% or 15
million) of data point pairs.

Figure 3A illustrates the identification of
gene clusters and the assignment of some data
points to the nonexon exemplar. The recon-
struction errors for affinity propagation and k-
centers clustering are compared in Fig. 3B.
For each number of clusters, affinity propa-
gation was run once and took 6 min, whereas
k-centers clustering was run 10,000 times and
took 208 hours. To address the question of how
well these methods perform in detecting bona
fide gene segments, Fig. 3C plots the true-
positive (TP) rate against the false-positive (FP)
rate, using the labels provided in the RefSeq
database (5). Affinity propagation achieved sig-
nificantly higher TP rates, especially at low
FP rates, which are most important to biolo-
gists. At a FP rate of 3%, affinity propagation
achieved a TP rate of 39%, whereas the best
k-centers clustering result was 17%. For com-
parison, at the same FP rate, the best TP rate
for hierarchical agglomerative clustering (2)
was 19%, and the engineering tool described
in (4), which accounts for additional bio-
logical knowledge, achieved a TP rate of 43%.

Affinity propagation’s ability to operate on the
basis of nonstandard optimization criteria makes
it suitable for exploratory data analysis using
unusual measures of similarity. Unlike metric-
space clustering techniques such as k-means
clustering (1), affinity propagation can be ap-
plied to problems where the data do not lie in a
continuous space. Indeed, it can be applied to
problems where the similarities are not symmet-
ric [i.e., s(i,k) ≠ s(k,i)] and to problems where the
similarities do not satisfy the triangle inequality
[i.e., s(i,k) < s(i, j) + s( j,k)]. To identify a small
number of sentences in a draft of this manuscript
that summarize other sentences, we treated each
sentence as a “bag of words” (6) and computed
the similarity of sentence i to sentence k based on
the cost of encoding the words in sentence i using
the words in sentence k. We found that 97% of
the resulting similarities (2, 3) were not symmet-
ric. The preferences were adjusted to identify
(using l = 0.8) different numbers of representa-
tive exemplar sentences (2), and the solution with
four sentences is shown in Fig. 4A.

We also applied affinity propagation to ex-
plore the problem of identifying a restricted
number of Canadian and American cities that
are most easily accessible by large subsets of
other cities, in terms of estimated commercial
airline travel time. Each data point was a city,
and the similarity s(i,k) was set to the negative
time it takes to travel from city i to city k by
airline, including estimated stopover delays (3).
Due to headwinds, the transit time was in many
cases different depending on the direction of
travel, so that 36% of the similarities were
asymmetric. Further, for 97% of city pairs i
and k, there was a third city j such that the
triangle inequality was violated, because the
trip from i to k included a long stopover delay

Fig. 2. Clustering faces. Exemplars minimizing the standard squared error measure of similarity were
identified from 900 normalized face images (3). For a common preference of −600, affinity
propagation found 62 clusters, and the average squared error was 108. For comparison, the best of
100 runs of k-centers clustering with different random initializations achieved a worse average
squared error of 119. (A) The 15 images with highest squared error under either affinity propagation
or k-centers clustering are shown in the top row. The middle and bottom rows show the exemplars
assigned by the two methods, and the boxes show which of the two methods performed better for that
image, in terms of squared error. Affinity propagation found higher-quality exemplars. (B) The
average squared error achieved by a single run of affinity propagation and 10,000 runs of k-centers
clustering, versus the number of clusters. The colored bands show different percentiles of squared
error, and the number of exemplars corresponding to the result from (A) is indicated. (C) The above
procedure was repeated using the sum of absolute errors as the measure of similarity, which is also a
popular optimization criterion.
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5. Conclusions

1. PPI networks have modular architecture.

3. Changes in modularity may have prognostic relevance on 
disease outcome and may improve the predictive value of 
existing clinical indicators. 

2. In cancer there is alteration of PPI network modularity: 
a dynamic change (co-expression) and a “rewiring”  
of the network

4. Multi-modal therapies that target hubs with altered 
modularity may be effective in patients with cancer.
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Why systems medicine?

1. Today medicine is largely reactive.

3. Generation and analysis of  “big data” sets

2. Identification of biomarkers allowing diseases to 
be detected and treated much earlier than is possible
today.

4. P4 medicine
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Predictive, Personalized, Preventive 
and Participatory (P4) Medicine

• Driven by systems approaches to disease, new  measurement 
(nanotechnology) and visualization  technologies and powerful new 
computational tools, P4 medicine will emerge over the next 10-20 
years



85

Predictive, Personalized, Preventive 
and Participatory (P4) Medicine

• Its two major objectives are to:

1. quantify wellness  

2.  demystify disease



Which are the technologies that will 
transform systems or P4 medicine?
• High throughput DNA sequencing for individual human 

genome (for less than 1,000$ in the next years)

• Targeted MRM (multiple reaction monitoring) mass 
spectrometry for discovery, validation and typing (initially) of 
blood fingerprints 

• Microfluidic protein chip to measure  blood organ-specific 
protein fingerprints and type millions of individuals and assess 
their key biological networks

• Single-cell analyses--deciphering the interplay of the digital 
genome and the environment

• In vivo and in vitro molecular imaging to assess disease 
distribution and follow therapy



P4 Medicine

• Predictive:
–Probabilistic health 

history--DNA 
sequence

–Biannual multi-
parameter blood 
protein measurements

–In vivo molecular 
imaging



P4 Medicine
• Preventive: 
• Design of therapeutic 

and preventive drugs 
via systems approaches
• Systems approaches to 

vaccines will transform 
prevention of infectious 
diseases
• Transition to wellness 

assessment  (from 
reaction to prevention)



P4 Medicine

• Personalized: 
–Unique individual 

human genetic 
variation mandates 
individual treatment

–Billions of data points 
on each individual

–Personalized 
treatment



Systems biology: personalized medicine for the future?

Integrative Personal Omics Profile (iPOP) analysis. Various types of systems data 
can be generated and integrated with the iPOP analysis. Note that this approach is 
highly modular and can be tailored to meet specific needs of different studies.

Curr. Opin. Pharmacol. 2012



P4 Medicine

• Participatory: 
–Patient understands 

and participates in 
medical choices

–Patient increasing will 
make choices with 
doctor intervention



https://www.systemsbiology.org/research/p4-medicine/



Digitalization of Biology and 
Medicine Will Transform Medicine

• Analysis of single molecules, single cells and single 
individuals

• A revolution that will transform medicine even more than 
digitalization transformed information technologies and 
communications

• Digitization of medicine will lead to dramatically lower 
healthcare costs

Single individual Single cell Single molecule
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A RT I C L E S

In order to understand the basis of wellness and disease, we and 
others have pursued a global and holistic approach termed ‘systems 
medicine’1. The defining feature of systems medicine is the collec-
tion of diverse longitudinal data for each individual. These data sets 
can be used to unravel the complexity of human biology and dis-
ease by assessing both genetic and environmental determinants of 
health and their interactions. We refer to such data as personal, dense, 
dynamic data clouds: personal, because each data cloud is unique to 
an individual; dense, because of the high number of measurements; 
and dynamic, because we monitor longitudinally. The convergence 
of advances in systems medicine, big data analysis, individual meas-
urement devices, and consumer-activated social networks has led 
to a vision of healthcare that is predictive, preventive, personalized, 
and participatory (P4)2, also known as ‘precision medicine’. Personal, 
dense, dynamic data clouds are indispensable to realizing this vision3. 
The US healthcare system invests 97% of its resources on disease 
care4, with little attention to wellness and disease prevention. Here 
we investigate scientific wellness, which we define as a quantitative 
data-informed approach to maintaining and improving health and 
avoiding disease.

Several recent studies have illustrated the utility of multi-omic lon-
gitudinal data to look for signs of reversible early disease or disease 
risk factors in single individuals. The dynamics of human gut and sali-
vary microbiota in response to travel abroad and enteric infection was 
characterized in two individuals using daily stool and saliva samples5. 
Daily multi-omic data collection from one individual over 14 months 
identified signatures of respiratory infection and the onset of type 2 

diabetes6. Crohn’s disease progression was tracked over many years 
in one individual using regular blood and stool measurements7. Each 
of these studies yielded insights into system dynamics even though 
they had only one or two participants.

We report the generation and analysis of personal, dense, dynamic 
data clouds for 108 individuals over the course of a 9-month study that 
we call the Pioneer 100 Wellness Project (P100). Our study included 
whole genome sequences; clinical tests, metabolomes, proteomes, and 
microbiomes at 3-month intervals; and frequent activity measure-
ments (i.e., wearing a Fitbit). This study takes a different approach 
from previous studies, in that a broad set of assays were carried out less 
frequently in a (comparatively) large number of people. Furthermore, 
we identified ‘actionable possibilities’ for each individual to enhance 
her/his health. Risk factors that we observed in participants’ clinical 
markers and genetics were used as a starting point to identify action-
able possibilities for behavioral coaching.

We report the correlations among different data types and identify 
population-level changes in clinical markers. This project is the pilot 
for the 100,000 (100K) person wellness project that we proposed 
in 2014 (ref. 8). An increased scale of personal, dense, dynamic 
data clouds in future holds the potential to improve our under-
standing of scientific wellness and delineate early warning signs for  
human diseases.

RESULTS
The P100 study had four objectives. First, establish cost-efficient 
procedures for generating, storing, and analyzing multiple sources 

A wellness study of 108 individuals using personal, 
dense, dynamic data clouds
Nathan D Price1,2,6,7, Andrew T Magis2,6, John C Earls2,6, Gustavo Glusman1  , Roie Levy1, Christopher Lausted1,  
Daniel T McDonald1,5, Ulrike Kusebauch1, Christopher L Moss1, Yong Zhou1, Shizhen Qin1, Robert L Moritz1  , 
Kristin Brogaard2, Gilbert S Omenn1,3, Jennifer C Lovejoy1,2 & Leroy Hood1,4,7

Personal data for 108 individuals were collected during a 9-month period, including whole genome sequences; clinical tests, 
metabolomes, proteomes, and microbiomes at three time points; and daily activity tracking. Using all of these data, we generated 
a correlation network that revealed communities of related analytes associated with physiology and disease. Connectivity within 
analyte communities enabled the identification of known and candidate biomarkers (e.g., gamma-glutamyltyrosine was densely 
interconnected with clinical analytes for cardiometabolic disease). We calculated polygenic scores from genome-wide association 
studies (GWAS) for 127 traits and diseases, and used these to discover molecular correlates of polygenic risk (e.g., genetic risk 
for inflammatory bowel disease was negatively correlated with plasma cystine). Finally, behavioral coaching informed by personal 
data helped participants to improve clinical biomarkers. Our results show that measurement of personal data clouds over time can 
improve our understanding of health and disease, including early transitions to disease states.

1Institute for Systems Biology, Seattle, Washington, USA. 2Arivale, Seattle, Washington, USA. 3Department of Computational Medicine and Bioinformatics, University 
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In order to understand the basis of wellness and disease, we and 
others have pursued a global and holistic approach termed ‘systems 
medicine’1. The defining feature of systems medicine is the collec-
tion of diverse longitudinal data for each individual. These data sets 
can be used to unravel the complexity of human biology and dis-
ease by assessing both genetic and environmental determinants of 
health and their interactions. We refer to such data as personal, dense, 
dynamic data clouds: personal, because each data cloud is unique to 
an individual; dense, because of the high number of measurements; 
and dynamic, because we monitor longitudinally. The convergence 
of advances in systems medicine, big data analysis, individual meas-
urement devices, and consumer-activated social networks has led 
to a vision of healthcare that is predictive, preventive, personalized, 
and participatory (P4)2, also known as ‘precision medicine’. Personal, 
dense, dynamic data clouds are indispensable to realizing this vision3. 
The US healthcare system invests 97% of its resources on disease 
care4, with little attention to wellness and disease prevention. Here 
we investigate scientific wellness, which we define as a quantitative 
data-informed approach to maintaining and improving health and 
avoiding disease.

Several recent studies have illustrated the utility of multi-omic lon-
gitudinal data to look for signs of reversible early disease or disease 
risk factors in single individuals. The dynamics of human gut and sali-
vary microbiota in response to travel abroad and enteric infection was 
characterized in two individuals using daily stool and saliva samples5. 
Daily multi-omic data collection from one individual over 14 months 
identified signatures of respiratory infection and the onset of type 2 

diabetes6. Crohn’s disease progression was tracked over many years 
in one individual using regular blood and stool measurements7. Each 
of these studies yielded insights into system dynamics even though 
they had only one or two participants.

We report the generation and analysis of personal, dense, dynamic 
data clouds for 108 individuals over the course of a 9-month study that 
we call the Pioneer 100 Wellness Project (P100). Our study included 
whole genome sequences; clinical tests, metabolomes, proteomes, and 
microbiomes at 3-month intervals; and frequent activity measure-
ments (i.e., wearing a Fitbit). This study takes a different approach 
from previous studies, in that a broad set of assays were carried out less 
frequently in a (comparatively) large number of people. Furthermore, 
we identified ‘actionable possibilities’ for each individual to enhance 
her/his health. Risk factors that we observed in participants’ clinical 
markers and genetics were used as a starting point to identify action-
able possibilities for behavioral coaching.

We report the correlations among different data types and identify 
population-level changes in clinical markers. This project is the pilot 
for the 100,000 (100K) person wellness project that we proposed 
in 2014 (ref. 8). An increased scale of personal, dense, dynamic 
data clouds in future holds the potential to improve our under-
standing of scientific wellness and delineate early warning signs for  
human diseases.

RESULTS
The P100 study had four objectives. First, establish cost-efficient 
procedures for generating, storing, and analyzing multiple sources 
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Personal data for 108 individuals were collected during a 9-month period, including whole genome sequences; clinical tests, 
metabolomes, proteomes, and microbiomes at three time points; and daily activity tracking. Using all of these data, we generated 
a correlation network that revealed communities of related analytes associated with physiology and disease. Connectivity within 
analyte communities enabled the identification of known and candidate biomarkers (e.g., gamma-glutamyltyrosine was densely 
interconnected with clinical analytes for cardiometabolic disease). We calculated polygenic scores from genome-wide association 
studies (GWAS) for 127 traits and diseases, and used these to discover molecular correlates of polygenic risk (e.g., genetic risk 
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“An increased scale of personal, dense, dynamic data clouds in future holds the potential to improve our
understanding of scientific wellness and delineate early warning signs for human diseases. «



Personal Genome project

http://www.personalgenomes.org



The field of cancer research has markedly benefited 
from WGS/WES. 
*whole genome sequencing (WGS), whole exome
sequencing (WES)

Cancer genomes include breast cancer, ovarian 
cancer, small-cell lung cancer, melanoma, chronic 
lymphocytic leukemia, Sonic-Hedgehog 
medulloblastoma, pediatric glioblastoma , and 
hepatocellular carcinoma, etc. In addition to bulk 
cancer sequencing, single-cell level cancer exomes
have also been examined with WES. 

When compared to normal tissues, these efforts 
identified somatic mutations for the specific cancer 
genomes as well as molecular markers for cancer 
subtyping, which may provide potential targets and 
guides for personalized cancer treatment.







PREDICT: a method for inferring novel drug
indications with application to personalized medicine
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Inferring potential drug indications, for either novel or approved drugs, is a key step in drug
development. Previous computational methods in this domain have focused on either drug
repositioning or matching drug and disease gene expression profiles. Here, we present a novel
method for the large-scale prediction of drug indications (PREDICT) that can handle both approved
drugs and novel molecules. Our method is based on the observation that similar drugs are indicated
for similar diseases, and utilizes multiple drug–drug and disease–disease similarity measures
for the prediction task. On cross-validation, it obtains high specificity and sensitivity (AUC¼0.9)
in predicting drug indications, surpassing existing methods. We validate our predictions by
their overlap with drug indications that are currently under clinical trials, and by their agreement
with tissue-specific expression information on the drug targets. We further show that disease-
specific genetic signatures can be used to accurately predict drug indications for new diseases
(AUC¼0.92). This lays the computational foundation for future personalized drug treatments,
where gene expression signatures from individual patients would replace the disease-specific
signatures.
Molecular Systems Biology 7:496; published online 7 June 2011; doi:10.1038/msb.2011.26
Subject Categories: bioinformatics; molecular biology of disease
Keywords: drug indication prediction; drug repositioning; drug repurposing; machine learning;
personalized medicine
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Introduction

Associating accurate indications with new molecules or
alternative indications for approved drugs is a key step
in drug development. High drug development costs (DiMasi
et al, 2003) call for computational solutions that would
minimize production time and ultimately development costs
(Terstappen and Reggiani, 2001). Current computational
methods for indication prediction mainly focus on small-scale
applications, where drugs that target proteins in disease-
specific molecular networks are sought (Kinnings et al, 2009;
Li et al, 2009; Kotelnikova et al, 2010), while large-scale
attempts are still scarce.
Previous attempts for large-scale identification of novel drug

indications include: (i) matching of gene expression profiles
proposed by the Connectivity Map (CMap) consortium (Lamb
et al, 2006; see also Hu and Agarwal (2009)) and (ii) the ‘Guilt
by Association’ (GBA) approach (Chiang and Butte, 2009).
CMap is a database containing ranked drug response gene
expression profiles. Querying the database with a disease-

specific genetic signature, CMap identifies drug response
profiles that either correlate (i.e., upregulated signature
genes tend to appear at the top of the profile while down-
regulated signature genes tend to appear at the bottom of the
profile) or anti-correlate with it. A similar approach was
proposed by Hu and Agarwal (2009), using gene expression
measurements downloaded from the Gene Expression
Omnibus (GEO; Edgar et al, 2002). While the CMap approach
can be applied to any potential drug, its prediction power has
not been assessed at large scale to date. As discussed in Hu and
Agarwal (2009), the gene expression approach currently
suffers both from low precision due to profiles generated
under different conditions and from incapability to capture
drug–disease associations that are not manifested at the gene
expression level. GBA (Chiang and Butte, 2009) attempts to
predict novel associations between drugs and diseases by
assuming that if two diseases are treated by the same drug,
alternative drugs treating only one of themmight treat also the
other. It is thus applicable only in the drug repositioning
setting, where some indication for the drug in question is
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FINE CORSO BIOLOGIA DEI SISTEMI



“Systems Biology” and biomedical applications

1) Diseases– introduction
2) Networks in biomedicine – introduction 
3) Application: The human diseasome
4) Application: Comorbidity 
5) Innate immunity: introduction and applications
6) Inflammation: introduction and applications
7) Tumors: introduction and applications
8) P4 medicine



Cross-validation (statistics) = a technique for estimating 
the performance of a predictive model.
Cross-validation, sometimes called rotation estimation, is a 
technique for assessing how the results of a statistical 
analysis will generalize to an independent data set.

Cross-validation (analytical chemistry) = the practice of 
confirming an experimental finding by repeating the 
experiment using an independent assay technique

Definitions


