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DISEASE 
 
DEFINITION: 
 
ALTERATION (REDUCTION, INCREASE, LACK) OF 
CELLULAR FUNCTION OF CELLS/TISSUES/ORGANS  
 
ALTERATION OF HOMEOSTATIC EQUILIBRIUM 
 
WHO: “Health is a state of complete physical, mental and social well-being  
and not merely the absence of disease or infirmity” 
 
 
 



HOMEOSTASIS IN BIOLOGY

= The tendency of an organism or a cell to regulate its internal 
conditions, usually by a system of feedback controls, so as to 
stabilize health and functioning, regardless of the outside 
changing conditions.

3 components are necessary: 1) receptor/sensor; 2) control 
center; 3) effector

= The ability of the body or a cell to seek and maintain a 
condition of equilibrium or stability within its internal 
environment when dealing with external changes.



Homeostasis maintainement



Sweat Shiver

Maintainement of homeostasis 
(body temperature)





The cell as unit of health and disease

Each branch of science has an elementary unit: the 
athom for phyisic, the molecule for chemistry. The 
elementary unit  for the study of diseases by 
bio-medicine is the cell. (modificato da G. Mayno 
e I. Joris: cellule, tessuti e malattia)



The cell as unit of health and disease 7Cellular Housekeeping

Fig. 1.6 Basic subcellular constituents of cells. The table presents the number of various organelles within a typical hepatocyte, as well as their volume within 
the cell. The figure shows geographic relationships but is not intended to be accurate to scale. *Rough and smooth ER form a single compartment; the Golgi 
apparatus is organized as a set of discrete stacked cisternae interconnected by transport vesicles. (Adapted from Weibel ER, Stäubli W, Gnägi HR, et al: Correlated 
morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver, J Cell Biol 42:68, 1969.)
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Relative volumes of intracellular organelles (hepatocyte)

Compartment % total volume number/cell role in the cell
Cytosol 54% 1 metabolism, transport, protein translation
Mitochondria 22% 1700 energy generation, apoptosis
Rough ER 9% 1* synthesis of membrane and secreted proteins
Smooth ER, Golgi 6% 1* protein modification, sorting, catabolism
Nucleus 6% 1 cell regulation, proliferation, DNA transcription
Endosomes 1% 200 intracellular transport and export, ingestion of extracellular substances
Lysosomes 1% 300 cellular catabolism
Peroxisomes 1% 400 very long-chain fatty acid metabolism

Peroxisome
Centrioles

Endosome

Lysosome

Cytoskeleton

Plasma
membrane

Microtubules

play a specialized role in the breakdown of very long 
chain fatty acids, generating hydrogen peroxide in the 
process.

The contents and position of cellular organelles also 
are subject to regulation. Endosomal vesicles shuttle inter-
nalized material to the appropriate intracellular sites or 
direct newly synthesized materials to the cell surface or 
targeted organelle. Movement of both organelles and pro-
teins within the cell and of the cell in its environment is 
orchestrated by the cytoskeleton. These structural proteins 
also regulate cellular shape and intracellular organiza-
tion, reTuisites for maintaining cell polarit\. This is par-
ticularly critical in epithelia, in which the top of the cell 
�apical� and the bottom and side of the cell �basolateral� are 
often exposed to different environments and have distinct  
functions.

Most of the adenosine triphosphate (ATP) that powers 
cells is made through oxidative phosphorylation in the 
mitochondria� However, mitochondria also serve as an 
important source of metabolic intermediates that are 
needed for anabolic metabolism. They also are sites of syn-
thesis of certain macromolecules (e.g., heme), and contain 
important sensors of cell damage that can initiate and regu-
late the process of apoptotic cell death.

Cell growth and maintenance reTuire a constant supply 
of both energy and the building blocks that are needed 
for synthesis of macromolecules. In growing and dividing 
cells, all of these organelles have to be replicated �organel�
lar biogenesis� and correctly apportioned in daughter cells 
following mitosis. Moreover, because the macromolecules 
and organelles have finite life spans (mitochondria, e.g., 
last only about 10 days), mechanisms also must exist 
that allow for the recognition and degradation of ´worn 

http://ebooksmedicine.net 

Inherited or acquired  
alterations of specifc 
molecules can result in 
damage to an organelle, 
alterations of cell functions 
and possibly cell death



ETIOLOGY: CAUSES OF DISEASE
CONGENITAL: START BEFORE OR IN CONCOMITANCE WITH BIRTH; can be:
- Genetical, 
- Due to pregnancy
- Due to delivery

HEREDITARY

ACQUIRED (after birth)

- CHEMICAL

•Exogenous compounds (either natural or deriving from human activities)
•Endogenous molecules

-Metabolic/catabolic products (bilirubin, lactic acid)
-Reactive oxygen and nitrogen species (ROS, RNS)
-Modified molecules (oxidized lipoproteins, glycated proteins)

- PHYSICAL

• temperature
• radiations
• pressure
• noise
•electrical



- BIOLOGICAL

Direct or indirect damage deriving from pathogen overgrowth

- DEFICIENCIES OR EXCESSES

• oxygen deficiency
• vitamin deficiency
• iron deficienzy/overload
• nutriens deficiency/excess
• cholesterol accumulation

- IMMUNOLOGICAL

- IATROGENIC

• drugs



Steps in the evolution of a diseaseC H A P T E R  2  Cell Injury, Cell Death, and Adaptations32

CAUSES OF CELL INJURY

The causes of cell injury span a range from gross physical 
trauma, such as after a motor vehicle accident, to a single 
gene defect that results in a nonfunctional enzyme in a 
specific metabolic disease. Most injurious stimuli can be 
grouped into the following categories.

+ypo[ia and ischePia. Hypoxia, which refers to oxygen 
deficiency, and ischemia, which means reduced blood 
supply, are among the most common causes of cell injury. 
Both deprive tissues of oxygen, and ischemia, in addition, 
results in a deficiency of essential nutrients and a build up 
of toxic metabolites. The most common cause of hypoxia 
is ischemia resulting from an arterial obstruction, but 
oxygen deficiency also can result from inadeTuate oxygen-
ation of the blood, as in a variety of diseases affecting the 
lung, or from reduction in the oxygen-carrying capacity of 
the blood, as with anemia of any cause, and carbon mon-
oxide (CO) poisoning.

7o[ins. Potentially toxic agents are encountered daily 
in the environment; these include air pollutants, insecti-
cides, CO, asbestos, cigarette smoke, ethanol, and drugs. 
Many drugs in therapeutic doses can cause cell or tissue 
injury in a susceptible patient or in many individuals if 
used excessively or inappropriately (Chapter 7). Even 
innocuous substances, such as glucose, salt, water and 
oxygen, can be toxic.

Infectious agents. All types of disease-causing patho-
gens, including viruses, bacteria, fungi, and protozoans, 
injure cells. The mechanisms of cell injury caused by these 
diverse agents are discussed in Chapter 9.

IPPunologic reactions. Although the immune system 
defends the body against pathogenic microbes, immune 
reactions also can result in cell and tissue injury. Examples 
are autoimmune reactions against one’s own tissues, aller-
gic reactions against environmental substances, and exces-
sive or chronic immune responses to microbes (Chapter 5). 
In all of these situations, immune responses elicit inÁam-
matory reactions, which are often the cause of damage to 
cells and tissues.

*enetic abnorPalities. Genetic aberrations can result in 
pathologic changes as conspicuous as the congenital mal-
formations associated with Down syndrome or as subtle as 
the single amino acid substitution in hemoglobin giving 
rise to sickle cell anemia (Chapter 7). Genetic defects may 
cause cell injury as a conseTuence of deficiency of func-
tional proteins, such as enzymes in inborn errors of metab-
olism, or accumulation of damaged DNA or misfolded 
proteins, both of which trigger cell death when they are 
beyond repair.

Nutritional iPbalances. Protein–calorie insufficiency 
among impoverished populations remains a major cause 
of cell injury, and specific vitamin deficiencies are not 
uncommon even in developed countries with high stan-
dards of living (Chapter 8). Ironically, excessive dietary 
intake may result in obesity and also is an important 
underlying factor in many diseases, such as type 2 diabetes 
mellitus and atherosclerosis.

Physical agents. Trauma, extremes of temperature, radi-
ation, electric shock, and sudden changes in atmospheric 
pressure all have wide-ranging effects on cells (Chapter 8).

of disease in any tissue or organ. It results from diverse 
causes, including ischemia (lack of blood Áow), infections, 
toxins, and immune reactions. Cell death also is a normal 
and essential process in embryogenesis, the development 
of organs, and the maintenance of tissue homeostasis.

Because damage to cells is the basis of all disease, in this 
chapter we discuss first the causes, mechanisms, and con-
seTuences of the various forms of acute cell injury, includ-
ing reversible injury and cell death. We then consider 
cellular adaptations to stress and conclude with two other 
processes that affect cells and tissues: the deposition of 
abnormal substances and cell aging.

Fig. 2.1 Steps in the evolution of disease. Only selected major causes (eti-
ologies) are shown. 
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Fig. 2.2 Sequence of reversible cell injury and cell death. Necrosis and 
apoptosis are the two major pathways of cell death and are discussed in 
detail later. 
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International Statistical Classification of Diseases and 
Related Health Problems 11th Revision

https://icd.who.int/browse11/l-m/en#/?view=G0



Prevalence and Incidence: definitions
Le misure di frequenza delle malattie possono descrivere:
- il verificarsi di nuovi casi (incidenza)
- l'insieme di tutti i casi esistenti in un determinato momento ed in 
una determinata popolazione (prevalenza)

Incidence = the number of new cases of a disease in a 
population over a period of time
- Estimates the probability/risk of a person to develop the 
disease

Prevalence = is a measurement of all individuals affected 
by the disease at a particular time

A prevalence rate is the total number of cases of a disease existing in a population divided by the 
total population. So, if a measurement of cancer is taken in a population of 40,000 people and 1,200 
were recently diagnosed with cancer and 3,500 are living with cancer, then the prevalence of cancer 
is 0.118. (or 11,750 per 100,000 persons)





Mortality = indicates numbers of deaths by place, time and cause

Mortality rate: is a measure of the number of deaths (in general, or due to a specific cause) in a 
particular population, scaled to the size of that population, per unit of time. Mortality rate is 
typically expressed in units of deaths per 1,000 individuals per year.

Deaths in millions % of deaths

Coronary heart disease 1.33 16.3
Stroke and other cerebrovascular diseases 0.76 9.3
Trachea, bronchus, lung cancers 0.48 5.9
Lower respiratory infections 0.31 3.8
Chronic obstructive pulmonary disease 0.29 3.5
Alzheimer and other dementias 0.28 3.4
Colon and rectum cancers 0.27 3.3
Diabetes mellitus 0.22 2.8
Breast cancer 0.16 2.0
Stomach cancer 0.14 1.8 

Developed countries



Mortality 

Deaths in millions % of deaths

Coronary heart disease 7.20 12.2
Stroke and other cerebrovascular diseases 5.71 9.7
Lower respiratory infections 4.18 7.1
Chronic obstructive pulmonary disease 3.02 5.1
Diarrhoeal diseases 2.16 3.7
HIV/AIDS   2.04 3.0
Tuberculosis 1.46 2.5
Trachea, bronchus, lung cancers 1.32 2.3
Road traffic accidents 1.27 2.2
Prematurity and low birth weight 1.18 2.0

In the world



Morbidity (from Latin morbidus, meaning "sick, unhealthy") 
= is a diseased state, disability, or poor health due to any cause.
= incidence of a particular disease in a population

Comorbidity = co-existance of more pathological states in the same 
person



Pattern = a form or model proposed for imitation, example. 
- group of traits/features of a cell, person
- design, motif, example, configuration, plan. 

Genotype = The entire set of genes in a cell, an organism, or 
an individual. It is hereditary. What is written in the DNA. It is 
unchangeable.
= A set of alleles that determines the expression of a particular 
characteristic or trait (phenotype).

Fenotype = The total characteristics displayed by an organism
or cell as a result of the interaction of its genotype and the 
environment. It can change. 
Disease phenotype: group of traits/characteristics that
define the pathological process
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Network medicine



The human interactome:

Formato da componenti cellulari che esercitano le 
loro azioni mediante interazioni con altri componenti 
cellulari nella stessa cellula, in altre cellule vicine o di 
altri organi

- 25,000 geni codificanti proteine
- ~30,000 proteine (HPRD)
- 1,000 metaboliti
- numero indefinito di molecole di RNA

- Links: interconnettività intra- e intercellulare



The human interactome

self-made. Dataset 
created by Andrew 
Garrow at Unilever UK.

Human Interactome 
network visualized by 
Cytoscape 2.5.Ray and Charles Eames: “Eventually, everything connects”



Understand the context of the gene/protein in a 
network is fundamental to understand the impact 
of gene/protein alteration on disease phenotype

1. The inter- and intracellular 
interconnectivity implies that THE IMPACT 
of a specific genetic abnormality is not 
restricted to the activity of the gene 
product that carries it, but CAN SPREAD 
ALONG THE LINKS of the network and alter 
the activity of gene products that 
otherwise carry no defects.

Fundamental principle:



L’interactoma umano

Interconnettività intra ed extra-cellulare

-
L’alterazione di un gene e quindi del suo 

prodotto ha un impatto sulle funzioni di altri 
componenti della rete

Il difetto di un gene si propaga (“spreads”) 
lungo i links (archi) ad altre zone della rete, si 
diffonde a proteine normali funzionalmente, 
quindi verso altre funzioni che sono correlate 
alla molecola disfunzionale.



Understand the context of the gene/protein in a 
network is fundamental to understand the impact 
of gene/protein alteration on disease phenotype

2. A disease phenotype is rarely 
a consequence of an abnormality 
in a single effector gene product, 

but reflects various 
pathobiological processes that 

are connected in a complex 
network

Fundamental principle:



1. Identification of genes, proteins and 

“pathways” involved in diseases

2. Predict disease mechanisms

3. Find biomarkers

4. New disease classifications

5. New pharmacological targets and in silico 

farmacology

The importance of networks in medicine:



1. Protein-protein interaction (PPI) 

networks

2. Metabolic networks

3. Regulatory networks

4. RNA networks

Network maps in biologia



1. Protein-protein interaction networks:

Nodi = proteine; Links/Edges (Archi) = interazioni fisiche proteina-proteina

- Munich Information Center for Protein Sequence (MIPS) protein 
interaction database
- Biomolecular Interaction Network Database (BIND) 
- Database of Interacting Proteins (DIP) 
- Molecular Interaction database (MINT)
- protein Interaction database (IntAct). 
- Biological General Repository for Interaction Datasets (BioGRID)
- Human Protein Reference Database (HPRD) have attempted larger-
scale curation of data. 
- STRING database contains known and predicted protein–protein 
interactions.

http://mips.helmholtz-muenchen.de/proj/ppi/
http://www.bind.ca/
http://dip.doe-mbi.ucla.edu/dip/
http://mint.bio.uniroma2.it/mint
http://www.ebi.ac.uk/intact/
http://thebiogrid.org/
http://www.hprd.org/
http://string-db.org/


2. Metabolic networks:
Nodi = metaboliti connessi se partecipano nelle stesse relazioni chimiche

The metabolic network maps are probably the most comprehensive of 
all biological networks. 

Databases:
-Kyoto Encyclopedia of Genes and Genomes (KEGG) 
-Biochemical Genetic and Genomics knowledgebase (BIGG) 
- lavoro di Duarte et al (Proc. Natl Acad. Sci. 2007): a comprehensive 
literature-based genome-scale metabolic reconstruction of human 
metabolism, with 2,766 metabolites and 3,311 metabolic and transport 
reactions. 
- lavoro di Ma et al (Mol. Syst. Biol., 2007): an independent manual 
construction containing nearly 3,000 metabolic reactions, organized 
into about 70 human-specific metabolic pathways.

http://www.genome.jp/kegg/
http://bigg.ucsd.edu/


Kyoto Encyclopedia of Genes and Genomes
http://www.genome.jp/kegg/

http://www.genome.jp/kegg/


Metabolic pathways homo sapiens (HSA)



3. Regulatory networks:
Nodi: geni, fattori di trascrizione, ensimi; Links: tra geni e fattori di trascrizione o modificazioni posttraslazionali

The human regulatory network is the most incomplete among all 
biological networks. 

Includes:

- Relationships between transcription factors and genes

- Post-translational modifications (es. Kinase-substrate)

Databases:

1. Data generated by experimental techniques, such as chromatin 
immunoprecipitation (ChIP) followed by microarrays (ChIP–chip) 
and ChIP followed by sequencing (ChIP–seq), have started to be 
collected in databases such as: 

- Universal Protein Binding Microarray Resource for 
Oligonucleotide Binding Evaluation (UniPROBE)

- JASPAR. 

http://the_brain.bwh.harvard.edu/uniprobe/
http://jaspar.genereg.net/


3. Regulatory networks:
(continuation)

2. Literature-curated and predicted protein–DNA interactions have 
been compiled in various databases, such as:
-TRANSFAC
- B-cell interactome (BCI). 

3. Human post-translational modifications can be found in databases 
such as:
- Phospho.ELM
- PhosphoSite
- Phosphorylation site database (PHOSIDA)
- NetPhorest
- CBS prediction database.

http://www.gene-regulation.com/pub/databases.html
http://amdec-bioinfo.cu-genome.org/html/BCellInteractome.html
http://phospho.elm.eu.org/
http://www.phosphosite.org/
http://www.phosida.com/
http://netphorest.info/index.php
http://www.cbs.dtu.dk/services/


4. RNA networks:

RNA networks contain RNA–RNA or RNA–DNA interactions (siRNA, 
miRNAs). 

microRNA–gene networks have been constructed using predicted 
microRNA targets available in databases such as:
- TargetScan, 
- PicTar, 
- microRNA, 
- miRBase
- miRDB. 

The number of experimentally supported targets is also increasing, 
and they are now compiled in databases such as:
- TarBase
- miRecords

http://www.targetscan.org/
http://pictar.mdc-berlin.de/
http://www.microrna.org/
http://www.mirbase.org/
http://mirdb.org/
http://diana.cslab.ece.ntua.gr/tarbase/
http://mirecords.biolead.org/


Ontology = the branch of metaphysics dealing with the nature of being
= a set of concepts and categories in a subject area or domain that shows 

their properties and the relations between them.

The GO project has developed three structured controlled vocabularies 
(ontologies) that describe gene products in terms of their associated: 1) 
biological processes, 2) cellular components and 3) molecular 
functions in a species-independent manner. 

The Gene Ontology project is a major bioinformatics initiative with the 
aim of standardizing the representation of gene and gene product 
attributes across species and databases. The project provides a 
controlled vocabulary of terms for describing gene product 
characteristics and gene product annotation data from GO Consortium 
members, as well as tools to access and process this data. 

http://www.geneontology.org/

http://www.geneontology.org/


"Gene Ontology" classifies functions along three aspects:

1) Biological process
2) Molecular function
3) Cellular component

• CELLULAR COMPONENT
DEFINES where gene products are active

•BIOLOGICAL PROCESS 

defines pathways and larger processes made up of the activities of 
multiple gene products. 

• MOLECOLAR FUNCTION

molecular activities of gene products/BIOCHEMICAL ACTIVITY.

http://www.geneontology.org/

http://www.geneontology.org/


Gene coexpression networks - geni con pattern 
di co-espresssione simile sono linked e collegati funzionalmente. 
Chiarisce la funzione di un gene su scala globale

Altri tipi di rete

Coexpressin networks: novel holistic approaches to analyze and interpret/explain 
microarray data. 

Coexpression networks represent an alternative to more conventional statistic analysis 
and clustering.

There is a cutoff - coexpression threshold (al di sopra quale le interazioni gene-gene 
sono considerate rilevanti). Il cutoff viene calcolato dalla topologia della rete.  Si usa 
PCC.

The nodes are genes. The links are non-direct. 



Gene coexpression networks
Other types of networks 

>3.182 DNA micorarrays human, flies, 
worms, yeast; found >20.000 coexpressions conserved 
during evolution

Weston et al., BMC Systems Biology, 2008

Each gene = spot; 
Short distance = genes functionally relared



Goh K et al. PNAS 2007;104:8685-8690

Disease gene network

Misura della
connettività del geneTwo genes are connected if they are implicated in the 

same disorder

Other types of networks 



Goh K et al. PNAS 2007;104:8685-8690

Human disease network

Misura del numero dei 
geni coinvolti

Other types of networks 



BIPARTITE Network

Goh K et al. PNAS 2007;104:8685-8690

Fenoma = THE SET 
OF ALL PHENOTYPES 
EXPRESSED BY A 
CELL, TISSUE, ORGAN, 
ORGANISM, OR 
SPECIES

Other types of networks 



Network medicine 

Applications: 
The human diseasome



- Derives from the simple observation of inter- and intracellular 

interconnectivity 

- Disease modules overlap 

- Perturbations in a module influences other modules 

- Estensive studies (per es. GWAS) have shown numerous gene-

disease associations 

- Many genetic diseases have more than one loci involved (locus 

heterogeneity)

- Different mutations in the same genes may give birth of 

different phenotypes; ex. TP53, Ras

- The linkage of one gene to diferent phenotypes suggest that 

different disease phenotypes may have a common origin and that 

the diseases are linked (Goh et al., PNAS 2007).

Background:



- The involvment of a gene in more diseases suggest these 
diseases are linked and may have a common origin (Goh et al., 
PNAS 2007).

Basic concept:

Common GeneDisease 1 Disease 2

Disease 1 and 2 are linked

The concept of Diseasome



The Diseasome concept

Diseasome = disease network in which:

- the nodes are diseases
-the links between two nodes are due to comon components

Organizzazione globale, sistemica delle malattie “genetiche”,
un “framework” che unisce le conoscenze sui “disease genes”
(disease genome) e sulle malattie genetiche (disease phenome)



Why study the diseasome?

1. Understand why some diseases develop in parallel

2.    Extract “comorbidity”

3. Drug discovery (use drugs already approved for diseases with 
similar molecular basis)

4. New approaches for prevention, diagnosis and treatment



Building the human diseasome

The human disease network
Kwang-Il Goh*†‡§, Michael E. Cusick†‡¶, David Valle!, Barton Childs!, Marc Vidal†‡¶**, and Albert-László Barabási*†‡**

*Center for Complex Network Research and Department of Physics, University of Notre Dame, Notre Dame, IN 46556; †Center for Cancer Systems Biology
(CCSB) and ¶Department of Cancer Biology, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115; ‡Department of Genetics, Harvard Medical
School, 77 Avenue Louis Pasteur, Boston, MA 02115; §Department of Physics, Korea University, Seoul 136-713, Korea; and !Department of Pediatrics and the
McKusick–Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205

Edited by H. Eugene Stanley, Boston University, Boston, MA, and approved April 3, 2007 (received for review February 14, 2007)

A network of disorders and disease genes linked by known disorder–
gene associations offers a platform to explore in a single graph-
theoretic framework all known phenotype and disease gene associ-
ations, indicating the common genetic origin of many diseases. Genes
associated with similar disorders show both higher likelihood of
physical interactions between their products and higher expression
profiling similarity for their transcripts, supporting the existence of
distinct disease-specific functional modules. We find that essential
human genes are likely to encode hub proteins and are expressed
widely in most tissues. This suggests that disease genes also would
play a central role in the human interactome. In contrast, we find that
the vast majority of disease genes are nonessential and show no
tendency to encode hub proteins, and their expression pattern indi-
cates that they are localized in the functional periphery of the
network. A selection-based model explains the observed difference
between essential and disease genes and also suggests that diseases
caused by somatic mutations should not be peripheral, a prediction
we confirm for cancer genes.

biological networks " complex networks " human genetics " systems
biology " diseasome

Decades-long efforts to map human disease loci, at first genet-
ically and later physically (1), followed by recent positional

cloning of many disease genes (2) and genome-wide association
studies (3), have generated an impressive list of disorder–gene
association pairs (4, 5). In addition, recent efforts to map the
protein–protein interactions in humans (6, 7), together with efforts
to curate an extensive map of human metabolism (8) and regulatory
networks offer increasingly detailed maps of the relationships
between different disease genes. Most of the successful studies
building on these new approaches have focused, however, on a
single disease, using network-based tools to gain a better under-
standing of the relationship between the genes implicated in a
selected disorder (9).

Here we take a conceptually different approach, exploring
whether human genetic disorders and the corresponding disease
genes might be related to each other at a higher level of cellular and
organismal organization. Support for the validity of this approach
is provided by examples of genetic disorders that arise from
mutations in more than a single gene (locus heterogeneity). For
example, Zellweger syndrome is caused by mutations in any of at
least 11 genes, all associated with peroxisome biogenesis (10).
Similarly, there are many examples of different mutations in the
same gene (allelic heterogeneity) giving rise to phenotypes cur-
rently classified as different disorders. For example, mutations in
TP53 have been linked to 11 clinically distinguishable cancer-
related disorders (11). Given the highly interlinked internal orga-
nization of the cell (12–17), it should be possible to improve the
single gene–single disorder approach by developing a conceptual
framework to link systematically all genetic disorders (the human
‘‘disease phenome’’) with the complete list of disease genes (the
‘‘disease genome’’), resulting in a global view of the ‘‘diseasome,’’
the combined set of all known disorder/disease gene associations.

Results
Construction of the Diseasome. We constructed a bipartite graph
consisting of two disjoint sets of nodes. One set corresponds to all

known genetic disorders, whereas the other set corresponds to all
known disease genes in the human genome (Fig. 1). A disorder and
a gene are then connected by a link if mutations in that gene are
implicated in that disorder. The list of disorders, disease genes, and
associations between them was obtained from the Online Mende-
lian Inheritance in Man (OMIM; ref. 18), a compendium of human
disease genes and phenotypes. As of December 2005, this list
contained 1,284 disorders and 1,777 disease genes. OMIM initially
focused on monogenic disorders but in recent years has expanded
to include complex traits and the associated genetic mutations that
confer susceptibility to these common disorders (18). Although this
history introduces some biases, and the disease gene record is far
from complete, OMIM represents the most complete and up-to-
date repository of all known disease genes and the disorders they
confer. We manually classified each disorder into one of 22 disorder
classes based on the physiological system affected [see supporting
information (SI) Text, SI Fig. 5, and SI Table 1 for details].

Starting from the diseasome bipartite graph we generated two
biologically relevant network projections (Fig. 1). In the ‘‘human
disease network’’ (HDN) nodes represent disorders, and two
disorders are connected to each other if they share at least one gene
in which mutations are associated with both disorders (Figs. 1 and
2a). In the ‘‘disease gene network’’ (DGN) nodes represent disease
genes, and two genes are connected if they are associated with the
same disorder (Figs. 1 and 2b). Next, we discuss the potential of
these networks to help us understand and represent in a single
framework all known disease gene and phenotype associations.

Properties of the HDN. If each human disorder tends to have a
distinct and unique genetic origin, then the HDN would be dis-
connected into many single nodes corresponding to specific disor-
ders or grouped into small clusters of a few closely related disorders.
In contrast, the obtained HDN displays many connections between
both individual disorders and disorder classes (Fig. 2a). Of 1,284
disorders, 867 have at least one link to other disorders, and 516
disorders form a giant component, suggesting that the genetic
origins of most diseases, to some extent, are shared with other
diseases. The number of genes associated with a disorder, s, has a
broad distribution (see SI Fig. 6a), indicating that most disorders
relate to a few disease genes, whereas a handful of phenotypes, such
as deafness (s ! 41), leukemia (s ! 37), and colon cancer (s ! 34),
relate to dozens of genes (Fig. 2a). The degree (k) distribution of
HDN (SI Fig. 6b) indicates that most disorders are linked to only
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level of LSMO is situated above the Fermi
level of Co and a maximum of inverse TMR
is expected when the Fermi level of LSMO is
approximately at the maximum of the spin2
DOS of Co. This is consistent with the max-
imum of inverse TMR observed at !0.4 V
for Co/STO/LSMO junctions (Fig. 3A). For a
positive bias, the TMR is expected to change
sign and become normal above 1 V when the
Fermi level of LSMO goes down into the
energy range of the majority spin d-band of
Co. This is also observed in Fig. 3A.

For ALO and ALO/STO barriers, a predom-
inant tunneling of s-character electrons (see ar-
row in Fig. 2B) is the usual explanation of the
positive polarization (6–8). The rapid drop
with bias (Fig. 3B) is similar to what has been
observed in most junctions with ALO barriers,
and completely different from what is obtained
when the tunneling is predominantly by d-char-
acter electrons (Fig. 3A). The origin of this
rapid decrease of the TMR at relatively small
bias has never been clearly explained. This is
roughly consistent with the energy dependence
of the DOS induced by sp-d bonding effects on
the first atomic layer of ALO in the calculation
of Nguyen-Mahn et al. (8) for the Co-ALO
interface. But Zhang et al. (13) have also shown
that a large part of the TMR drop can be
attributed to the excitation of spin waves.

The experiments reported here and in sev-
eral recent publications (3, 4) demonstrate the
important role of the electronic structure of the
metal-oxide interface in determining the spin
polarization of the tunneling electrons. The neg-
ative polarization for the Co-STO interface has
been ascribed to d-d bonding effects between
Al and Ti (4). This interpretation is similar to

that proposed to explain, in terms of sp-d bond-
ing, the positive polarization at the Co-ALO
interface (8). However, there is no general the-
ory predicting the trend of the experimental
results for Co—that is, a negative polarization
with oxides of d elements (STO, CLO, Ta2O5)
and a positive one when there are only s and p
states (ALO). It is likely that the spin polariza-
tion should also depend on the position of the
Fermi level with respect to the electronic levels
of each character above and below the gap of
the insulator. In addition, as an evanescent
wave in an insulator is a Bloch wave with an
imaginary wave vector, one can expect differ-
ent decay lengths for Bloch waves of different
character. This means that the final polarization
could also depend on the thickness of the bar-
rier, as illustrated by the calculations of Mac-
Laren et al. for Fe/ZnSe/Fe junctions (14).

The influence of the barrier on the spin
polarization opens new ways to shape and op-
timize the TMR. Interesting bias dependencies
can be obtained with barriers selecting the d
electrons and probing the fine structure of the
d-DOS, as in Fig. 3A. The DOS of a d-band can
also be easily tailored by alloying (for example,
by introduction of virtual bound states) to pro-
duce specific bias dependencies. Although here
we concentrated on the problem of the spin
polarization of the Co electrode and regarded
the strongly spin-polarized LSMO only as a
useful spin analyzer, the large TMR ratios ob-
tained by combining Co and LSMO electrodes
(50% with a STO barrier) are also an interesting
result. The drawback arising from the low
Curie temperature of LSMO ("350 K) is the
reduction of the TMR at room temperature,

down to about 5% at 300 K in Co/STO/
LSMO (4). However, other types of oxides of
the double-perovskite family (for example,
Sr2FeMoO6) combine electronic properties
similar to those of manganites with a defi-
nitely higher Curie temperature (15). Their
use in magnetic tunnel junctions is promising
for a new generation of tunnel junctions with
very high magnetoresistance for room-tem-
perature applications.
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Emergence of Scaling in
Random Networks

Albert-László Barabási* and Réka Albert

Systems as diverse as genetic networks or the World Wide Web are best
described as networks with complex topology. A common property of many
large networks is that the vertex connectivities follow a scale-free power-law
distribution. This feature was found to be a consequence of two generic mech-
anisms: (i) networks expand continuously by the addition of new vertices, and
(ii) new vertices attach preferentially to sites that are already well connected.
A model based on these two ingredients reproduces the observed stationary
scale-free distributions, which indicates that the development of large networks
is governed by robust self-organizing phenomena that go beyond the particulars
of the individual systems.

The inability of contemporary science to de-
scribe systems composed of nonidentical el-
ements that have diverse and nonlocal inter-

actions currently limits advances in many
disciplines, ranging from molecular biology
to computer science (1). The difficulty of
describing these systems lies partly in their
topology: Many of them form rather complex
networks whose vertices are the elements of
the system and whose edges represent the
interactions between them. For example, liv-
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Fig. 3. Bias dependence of the TMR ratio in (A)
Co/STO/LSMO and (B) Co/ALO/STO/LSMO
tunnel junctions.
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ki!1 outgoing (or incoming) links is less
than NPout(ki!1) (or NPin(ki!1)).

A particularly important quantity in a
search process is the shortest path between
two documents, d, defined as the smallest
number of URL links that must be followed
to navigate from one document to the
other. We find that the average of d over all
pairs of vertices is "d#$ 0.35!2.06log(N)
(Fig. 1c), indicating that the web forms a
small-world network5,7, which characterizes
social or biological systems. For N$ 8% 108,
"dweb#$ 18.59; that is, two randomly chosen
documents on the web are on average 19
clicks away from each other.

For a given N, d follows a gaussian distri-
bution so "d# can be interpreted as the diam-
eter of the web, a measure of the shortest
distance between any two points in the sys-
tem. Despite its huge size, our results indi-
cate that the web is a highly connected graph
with an average diameter of only 19 links.
The logarithmic dependence of "d# on N is
important to the future potential of the web:
we find that the expected 1,000% increase in
the size of the web over the next few years
will change "d# very little, from 19 to only 21.

The relatively small value of "d# indicates
that an intelligent agent, who can interpret
the links and follow only the relevant one,
can find the desired information quickly by
navigating the web. But this is not the case
for a robot that locates the information
based on matching strings. We find that
such a robot, aiming to identify a docu-
ment at distance "d#, needs to search
M("d#)& 0.53×N 0.92 documents, which,
with N$ 8% 108, leads to M$ 8% 107, or
10% of the whole web. This indicates that
robots cannot benefit from the highly con-
nected nature of the web, their only success-
ful strategy being to index as much of the
web as possible.

The scale-free nature of the link distrib-
utions indicates that collective phenomena
play a previously unsuspected role in the
development of the web8, forcing us to look
beyond the traditional random graph mod-
els3–5,7. A better understanding of the web’s
topology, aided by modelling efforts, is cru-
cial in developing search algorithms or
designing strategies for making information
widely accessible on the World-Wide Web.
Fortunately, the surprisingly small diameter
of the web means that all that information
is just a few clicks away.
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incoming links, the probability of finding
very popular addresses, to which a large
number of other documents point, is non-
negligible, an indication of the flocking
nature of the web. Furthermore, while the
owner of each web page has complete free-
dom in choosing the number of links on a
document and the addresses to which they
point, the overall system obeys scaling laws
characteristic only of highly interactive self-
organized systems and critical phenomena6.

To investigate the connectivity and the
large-scale topological properties of the
web, we constructed a directed random
graph consisting of N vertices, assigning to
each vertex k outgoing (or incoming) links,
such that k is drawn from the power-law
distribution of Fig. 1a,b. To achieve this, we
randomly selected a vertex i and increased
its outgoing (or incoming) connectivity to
ki!1 if the total number of vertices with

Internet

Diameter of the 
World-Wide Web
Despite its increasing role in communica-
tion, the World-Wide Web remains uncon-
trolled: any individual or institution can
create a website with any number of docu-
ments and links. This unregulated growth
leads to a huge and complex web, which
becomes a large directed graph whose ver-
tices are documents and whose edges are
links (URLs) that point from one docu-
ment to another. The topology of this
graph determines the web’s connectivity
and consequently how effectively we can
locate information on it. But its enormous
size (estimated to be at least 8% 108 docu-
ments1) and the continual changing of docu-
ments and links make it impossible to
catalogue all the vertices and edges.

The extent of the challenge in obtaining
a complete topological map of the web is
illustrated by the limitations of the com-
mercial search engines: Northern Light, the
search engine with the largest coverage, is
estimated to index only 38% of the web1.
Although much work has been done to
map and characterize the Internet’s infra-
structure2, little is known about what really
matters in the search for information —
the topology of the web. Here we take a step
towards filling this gap: we have used local
connectivity measurements to construct a
topological model of the World-Wide Web,
which has enabled us to explore and char-
acterize its large-scale properties.

To determine the local connectivity of
the web, we constructed a robot that adds to
its database all URLs found on a document
and recursively follows these to retrieve the
related documents and URLs. We used the
data collected to determine the probabilities
Pout(k) and Pin(k) that a document has k
outgoing and incoming links, respectively.
We find that both Pout(k) and Pin(k) follow a
power law over several orders of magnitude,
remarkably different not only from the
Poisson distribution predicted by the classi-
cal theory of random graphs3,4, but also
from the bounded distribution found in
models of random networks5.

The power-law tail indicates that the
probability of finding documents with a
large number of links is significant, as the
network connectivity is dominated by
highly connected web pages. Similarly, for
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Figure 1 Distribution of links on the World-Wide Web. a, Outgoing

links (URLs found on an HTML document); b, incoming links (URLs

pointing to a certain HTML document). Data were obtained from

the complete map of the nd.edu domain, which contains 325,729

documents and 1,469,680 links. Dotted lines represent analytical

fits used as input distributions in constructing the topological

model of the web; the tail of the distributions follows P(k)& k' (,

with (out$ 2.45 and (in$ 2.1. c, Average of the shortest path

between two documents as a function of system size, as predicted

by the model. To check the validity of our predictions, we deter-

mined d for documents in the domain nd.edu. The measured

"dnd.edu#$ 11.2 agrees well with the prediction "d3% 105#$ 11.6

obtained from our model. To show that the power-law tail of P(k) is

a universal feature of the web, the inset shows Pout(k) obtained by

starting from whitehouse.gov (squares), yahoo.com (triangles) and

snu.ac.kr (inverted triangles). The slope of the dashed line is

(out$ 2.45, as obtained from nd.edu in a.
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ki!1 outgoing (or incoming) links is less
than NPout(ki!1) (or NPin(ki!1)).

A particularly important quantity in a
search process is the shortest path between
two documents, d, defined as the smallest
number of URL links that must be followed
to navigate from one document to the
other. We find that the average of d over all
pairs of vertices is "d#$ 0.35!2.06log(N)
(Fig. 1c), indicating that the web forms a
small-world network5,7, which characterizes
social or biological systems. For N$ 8% 108,
"dweb#$ 18.59; that is, two randomly chosen
documents on the web are on average 19
clicks away from each other.

For a given N, d follows a gaussian distri-
bution so "d# can be interpreted as the diam-
eter of the web, a measure of the shortest
distance between any two points in the sys-
tem. Despite its huge size, our results indi-
cate that the web is a highly connected graph
with an average diameter of only 19 links.
The logarithmic dependence of "d# on N is
important to the future potential of the web:
we find that the expected 1,000% increase in
the size of the web over the next few years
will change "d# very little, from 19 to only 21.

The relatively small value of "d# indicates
that an intelligent agent, who can interpret
the links and follow only the relevant one,
can find the desired information quickly by
navigating the web. But this is not the case
for a robot that locates the information
based on matching strings. We find that
such a robot, aiming to identify a docu-
ment at distance "d#, needs to search
M("d#)& 0.53×N 0.92 documents, which,
with N$ 8% 108, leads to M$ 8% 107, or
10% of the whole web. This indicates that
robots cannot benefit from the highly con-
nected nature of the web, their only success-
ful strategy being to index as much of the
web as possible.

The scale-free nature of the link distrib-
utions indicates that collective phenomena
play a previously unsuspected role in the
development of the web8, forcing us to look
beyond the traditional random graph mod-
els3–5,7. A better understanding of the web’s
topology, aided by modelling efforts, is cru-
cial in developing search algorithms or
designing strategies for making information
widely accessible on the World-Wide Web.
Fortunately, the surprisingly small diameter
of the web means that all that information
is just a few clicks away.
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incoming links, the probability of finding
very popular addresses, to which a large
number of other documents point, is non-
negligible, an indication of the flocking
nature of the web. Furthermore, while the
owner of each web page has complete free-
dom in choosing the number of links on a
document and the addresses to which they
point, the overall system obeys scaling laws
characteristic only of highly interactive self-
organized systems and critical phenomena6.

To investigate the connectivity and the
large-scale topological properties of the
web, we constructed a directed random
graph consisting of N vertices, assigning to
each vertex k outgoing (or incoming) links,
such that k is drawn from the power-law
distribution of Fig. 1a,b. To achieve this, we
randomly selected a vertex i and increased
its outgoing (or incoming) connectivity to
ki!1 if the total number of vertices with
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Diameter of the 
World-Wide Web
Despite its increasing role in communica-
tion, the World-Wide Web remains uncon-
trolled: any individual or institution can
create a website with any number of docu-
ments and links. This unregulated growth
leads to a huge and complex web, which
becomes a large directed graph whose ver-
tices are documents and whose edges are
links (URLs) that point from one docu-
ment to another. The topology of this
graph determines the web’s connectivity
and consequently how effectively we can
locate information on it. But its enormous
size (estimated to be at least 8% 108 docu-
ments1) and the continual changing of docu-
ments and links make it impossible to
catalogue all the vertices and edges.

The extent of the challenge in obtaining
a complete topological map of the web is
illustrated by the limitations of the com-
mercial search engines: Northern Light, the
search engine with the largest coverage, is
estimated to index only 38% of the web1.
Although much work has been done to
map and characterize the Internet’s infra-
structure2, little is known about what really
matters in the search for information —
the topology of the web. Here we take a step
towards filling this gap: we have used local
connectivity measurements to construct a
topological model of the World-Wide Web,
which has enabled us to explore and char-
acterize its large-scale properties.

To determine the local connectivity of
the web, we constructed a robot that adds to
its database all URLs found on a document
and recursively follows these to retrieve the
related documents and URLs. We used the
data collected to determine the probabilities
Pout(k) and Pin(k) that a document has k
outgoing and incoming links, respectively.
We find that both Pout(k) and Pin(k) follow a
power law over several orders of magnitude,
remarkably different not only from the
Poisson distribution predicted by the classi-
cal theory of random graphs3,4, but also
from the bounded distribution found in
models of random networks5.

The power-law tail indicates that the
probability of finding documents with a
large number of links is significant, as the
network connectivity is dominated by
highly connected web pages. Similarly, for
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P(k)~ k−γ

y= degree exponent



1. Degree distribution e hubs

Party hubs

Date hubs



OMIM is a comprehensive, authoritative, and timely compendium of 
human genes and genetic phenotypes. The full-text, referenced 
overviews in OMIM contain information on all known mendelian 
disorders and over 12,000 genes. OMIM focuses on the relationship 
between phenotype and genotype. It is updated daily, and the entries 
contain copious links to other genetics resources. 

On line (“O”) catalog of mendelian traits and disorders, entitled 
Mendelian Inheritance in Man (MIM).

http://www.ncbi.nlm.nih.gov/omim

http://www.ncbi.nlm.nih.gov/omim


OMIM database

Dicembre 2005:  1,284 malattie “genetiche” e 1,777 geni implicati nelle malattie
Classificazione “manually-curated” in 22 classi di malattie



Construzione del diseasoma

Goh K et al. PNAS 2007;104:8685-8690

HDN: Due malattie sono connesse se hanno in comune almeno un gene mutato
DGN: due geni sono interconnessi se sono coinvolti nella stessa malattia



Goh K et al. PNAS 2007;104:8685-8690





The properties of disease network  (HDN)

1. Diseases and disease classes are strongly

interconnected) (from 1284 diseases, 867 have at
least one link)

2. 516 diseases form a giant cluster, suggesting
shared genetical bases for numerous diseases



The properties of disease network

Distribution of the size (s) in the HDN 
s = number of genes associated to a disease

Distribution of K = degree

Distribution of the cluster sizes in the HDN
- the isolated peak at 516 corresponds to the size of 

the giant component

- Large distribution
- The majority of diseases have few genes involved
- deafness (s=41), leukemia (s=37); colon cancer (s=34)
P(s) = probability distribution

- The majority of diseases has few links
- hubs: colon cancer (k=50); breat cancer (k= 30)
- most comnnected nodes are specific for oncologic 
diseases (especially through TP53 e PTEN genes)
f(x) = c(x + a)b



DATA BINNING IS A DATA PRE-PROCESSING 
TECHNIQUE USED TO REDUCE THE EFFECTS OF 
MINOR OBSERVATION ERRORS. 

THE ORIGINAL DATA VALUES WHICH FALL IN A GIVEN 
SMALL INTERVAL, A BIN, ARE REPLACED BY A VALUE 
REPRESENTATIVE OF THAT INTERVAL, OFTEN THE 
CENTRAL VALUE. 

QUANTIZATION IS THE PROCEDURE OF CONSTRAINING 
SOMETHING FROM A RELATIVELY LARGE OR 
CONTINUOUS SET OF VALUES (SUCH AS THE REAL 
NUMBERS) TO A RELATIVELY SMALL DISCRETE SET.

Data binning IS A FORM OF QUANTIZATION = QUANTIZZAZIONE IN ITALIANO 





The properties of disease network
The network shows connections between diseases and between disease 
classes

Clusters tend to be formed based on disease class

The cluster of cancer is highly interconnected (several genes are associated with 
many types of cancers: TP53, KRAS, ERBB2, NF1)

The cluster of cancer includes also diseases such as ataxia-teleangiectasia and  
Fanconi anemia

Metabolic diseases do not form a single cluster, but are distributed between 
other clusters

Oncologic diseases and neurologic diseases have highest locus heterogeneity 
and are the most interconnected.
(LOCUS HETEROGENEITY: same disease phenotype is generated by mutations in different genes)



Goh K et al. PNAS 2007;104:8685-8690

Two genes are connected if they are involved 
in the same disease 
“Gene-centric” vision of the diseasoma; links –
phenotypic associations



Le proprietà della rete di disease genes

1. Disease genes are strongly interconnected I 
(from 1777 genes considered, 1377 have at 
least one link)

2. 903 genes form a giant cluster, suggesting 
common genetic bases for many diseases



The properties of disease gene network

Histogram of the number of 
disorders a gene is involved 
in 
- The majority of disease 
genes are involved in few 
diseases
- The  4 genes involved in 
more diseases (major hubs) 
are shown

Distribution of the connected component 
sizes in the DGN (blue) versus randomized 
network (light blue)





The common charateristics of disease network 
and disease gene network

1. Clusterization of diseases and disease genes based on
pathological phenotype

2. Diseases and disease genes tend to cluster based on common
pathological processes

Ex.: in the disease network there are 812 links between diseases of the 
same class compared to 107 links in the randomized network 
(8-fold increase).



Does disease gene network correspond to the PPI network? 

Hypothesis: Disease genes                       proteins interacting in functional 

modules

Overlap between disease gene network and PPI network

Goh K et al. PNAS 2007;104:8685-
8690

Number of observed 

physical interactions 

between the products of 

genes within the same 

disorder (red arrow) and the 

distribution of the expected 

number of interactions for 

the random control (blue) (P 

< 10−6). 

Limiti dello studio: 
non conosciamo 
tutti geni coinvolti 
nelle malattie e non 
conosciamo tutte le 
interazioni proteiche

10-fold increase of 

interactions compared to the 

random control



Una distribuzione di probabilità è, in sostanza, 
una funzione matematica che, per ogni valore 
della variabile, fornisce la probabilità che venga 
osservato quel valore. 

La distribuzione di probabilità continua: il risultato 
cade in un certo intervallo finito di valori, compreso, 
ad esempio, fra  a e b. Una tale probabilità, P(a, b) si 
esprime come un integrale: 

Figura 1.1: Distribuzione di probabilità per il risultato del
lancio di due dadi.

Esistono poi distribuzioni di probabilità continue, per le quali è possibile che si osservino
valori compresi in un certo intervallo (eventualmente di ampiezza infinita) di numeri reali.
Qui le cose si complicano un poco, dal punto di vista matematico. Infatti, data l'infinità non
numerabile dei numeri reali in un qualsiasi intervallo, dobbiamo concludere che non ha senso
assegnare una probabilità finita a ciascuno di essi: paradossalmente, ogni risultato, per quanto
possibile, deve avere probabilità nulla. L'unica probabilità finita che ha senso definire è quella
che il risultato cada in un certo intervallo finito di valori, compreso, ad esempio, fra  e .
Una tale probabilità, , si esprime come un integrale 

(1.1)

e la funzione , che definisce la distribuzione, è chiamata densità di probabilità e può

essere considerata come la derivata della probabilità. La densità di probabilità  è dunque

pari alla probabilità che il risultato cada in un intervallo infinitesimamente piccolo attorno al
valore  divisa per l'ampiezza di questo intervallo. Normalmente, come abbiamo fatto
nell'esempio del dado, la probabilità è normalizzata all'unità, vale a dire che la probabilità di
ottenere un qualsiasi risultato non specificato (cioè la somma di tutte le probabilità) è pari ad
uno (certezza). Nel caso continuo, questo si esprime nel modo seguente: 

(1.2)

Figura 1.1: Distribuzione di probabilità per il risultato del
lancio di due dadi.

Esistono poi distribuzioni di probabilità continue, per le quali è possibile che si osservino
valori compresi in un certo intervallo (eventualmente di ampiezza infinita) di numeri reali.
Qui le cose si complicano un poco, dal punto di vista matematico. Infatti, data l'infinità non
numerabile dei numeri reali in un qualsiasi intervallo, dobbiamo concludere che non ha senso
assegnare una probabilità finita a ciascuno di essi: paradossalmente, ogni risultato, per quanto
possibile, deve avere probabilità nulla. L'unica probabilità finita che ha senso definire è quella
che il risultato cada in un certo intervallo finito di valori, compreso, ad esempio, fra  e .
Una tale probabilità, , si esprime come un integrale 

(1.1)

e la funzione , che definisce la distribuzione, è chiamata densità di probabilità e può

essere considerata come la derivata della probabilità. La densità di probabilità  è dunque

pari alla probabilità che il risultato cada in un intervallo infinitesimamente piccolo attorno al
valore  divisa per l'ampiezza di questo intervallo. Normalmente, come abbiamo fatto
nell'esempio del dado, la probabilità è normalizzata all'unità, vale a dire che la probabilità di
ottenere un qualsiasi risultato non specificato (cioè la somma di tutte le probabilità) è pari ad
uno (certezza). Nel caso continuo, questo si esprime nel modo seguente: 

(1.2)

= densità di probabilità = probabilità che il 
risultato cada in un intervallo infinitesimamente 
piccolo attorno al valore x divisa per l'ampiezza 
di questo intervallo. 

http://www.thch.unipg.it/~franc/i/node4.html

http://www.thch.unipg.it/~franc/i/node4.html


VALIDATION OF DISEASE GENE NETWORK

How we validate a network or a disease module?



- Cellular components associated with a specific disease tend to 
Cluster in the same network “neighbourhood”

- Each disease is characterized by a module (“neighbourhood”) 
Inside the interactome

Disease modules



Barabasi et al., 2011

2. Disease modules

Topological modules are local dense  “neighbourhoods”
in a network (nodes inside a module have higher 
probability to interact compared to other nodes).

Are detected by clustering alghoritms

Are “pure” network properties? 



Barabasi et al., 2011

2. Disease modules

Each node has its own function

Functional modules are node 
aggregates that are involved in the
same biological function 

Nodes involved in the same 
biological function tend 
to interact in a network



Barabasi et al., 2011

2. Disease modules

Disease modules are a group (cluster) of nodes 
contributing to a cellular function; their 
perturbation (mutations, deletions, 
variation of gene expression, etc) is linked to
a particular disease phenotype.



2. Disease modules

Hypotheses in network medicine:

- Topological modules correspond with functional
modules

- The disease is viewed as a perturbation of a 
functional module; 
Thus, functional modules (often) are also disease 
modules

- Topological, functional and disease modules 
often OVERLAPP



Disease module validation

Functional homogeneity
- Gene ontology (1) biological processes, 

2) cellular components and 3) molecular functions)
Tissue specificity

Dynamic homogeneity 
- Co-expression

Other tests:
- GWA (SNPs identified for the nodes/genes)

Predictions:
- Disease genes
- Disease pathways
- Drug targets

Remember!!



Ontologia = rappresentazione formale di una concettualizzazione di un dominio di 
interesse 

= schema concettuale di classificazione, un glossario di base

The GO project has developed three structured controlled vocabularies 
(ontologies) that describe gene products in terms of their associated: 1) 
biological processes, 2) cellular components and 3) molecular 
functions in a species-independent manner. 

The Gene Ontology project is a major bioinformatics initiative with the 
aim of standardizing the representation of gene and gene product 
attributes across species and databases. The project provides a controlled 
vocabulary of terms for describing gene product characteristics and gene 
product annotation data from GO Consortium members, as well as tools to 
access and process this data. 

http://www.geneontology.org/

http://www.geneontology.org/


Functional homogeneity of disease genes on Gene Ontology

Hypothesis: the groups of genes associated to each disease share cellular 
and functional similarities (annotations in Gene Ontology) 

Measure GO homogeneity (GH) for each disease= maximum fraction of 
genes in the same disorder that have the same GO terms

GHi = maxj [nj
i/ni],

ni = numero di geni nella malattia “i” che ha qualsiasi annotazione GO (number of genes in the disorder i that have any GO annotations,)
nj

i = numero di geni che ha uno specifico termine j in GO (number of genes that have the specific GO term j)

23X 13X 9X

«To obtain the random control of the GO homogeneity distribution for each disorder we picked the same number of genes randomly in the GO 
annotation data and calculated their GO homogeneity.  104 random instances were generated to reach statistical significance.»



Genomics. 2005 Aug;86(2):127-41.
Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in 
normal tissues.
Ge X, Yamamoto S, Tsutsumi S, Midorikawa Y, Ihara S, Wang SM, Aburatani H.

Abstract
A critical and difficult part of studying cancer with DNA microarrays is data interpretation. Besides the need for data 
analysis algorithms, integration of additional information about genes might be useful. We performed genome-
wide expression profiling of 36 types of normal human tissues and identified 2503 tissue-specific genes. We 
then systematically studied the expression of these genes in cancers by reanalyzing a large collection of published 
DNA microarray datasets. We observed that the expression level of liver-specific genes in hepatocellular carcinoma 
(HCC) correlates with the clinically defined degree of tumor differentiation. Through unsupervised clustering of 
tissue-specific genes differentially expressed in tumors, we extracted expression patterns that are characteristic of 
individual cell types, uncovering differences in cell lineage among tumor subtypes. We were able to detect the 
expression signature of hepatocytes in HCC, neuron cells in medulloblastoma, glia cells in glioma, basal and 
luminal epithelial cells in breast tumors, and various cell types in lung cancer samples. We also demonstrated that 
tissue-specific expression signatures are useful in locating the origin of metastatic tumors. Our study shows that 
integration of each gene's breadth of expression (BOE) in normal tissues is important for biological interpretation of 
the expression profiles of cancers in terms of tumor differentiation, cell lineage, and metastasis.

Tissue-specific distribution of disease genes

Network validation: are the proteins encoded by disease genes, which are
specific for each disease, expressed in the same tissues? 

Consideration: the proteins encoded by disease genes that interact in 
the same functional module tend to be expressed in the same tissue



Tissue –specific distribution of disease genes

The tissue homogeneity (TH) coefficient quantifies whether genes that 
are implicated in the same disorders tend to be expressed in similar 
human tissues. 
THi = maxj [nj

i/ni]
ni = numero di geni nella malatia “i” che e’ espresso in almeno un tessuto; nj

i = numero di geni espressi nel tessutto j tra i geni di malattia; 
TH = 1 se tutti I geni sono espressi assieme in almeno un tessuto ed ha valore minimo 1/n quando tutti i geni sono espressi in tessutti diversi

68% delle malattie 
connesse presentano 
omogeneità’ tessutale
P<10-5

Dataset of 10.594 geni in 36 healthy tissues (Ge et al., Genomics, 2005)

Goh K et al. PNAS 2007;104:8685-8690

In rosso-il coefficiente dei disease genes
In blu-il coefficiente dello stesso numero di geni
scelti in maniera random dal micorrray

Network validation: are the proteins encoded by disease genes, which are
specific for each disease, expressed in the same tissues? 



Disease module validation

Functional homogeneity
- Gene ontology (1) biological processes, 

2) cellular components and 3) molecular functions)
Tissue specificity

Dynamic homogeneity 
- Co-expression

Other tests:
- GWA (SNPs identified for the nodes/genes)

Predictions:
- Disease genes
- Disease pathways
- Drug targets

Remember!!



Pearson correlation coefficient (PCC) = descriptor of the 
degree of linear association between two variables.

The correlation coefficient ranges from −1 to 1. A value of 1 
implies that a linear equation describes the relationship 
between X and Y perfectly, with all data points lying on a line 
for which Y increases as X increases. A value of −1 implies 
that all data points lie on a line for which Y decreases as X 
increases. A value of 0 implies that there is no linear 
correlation between the variables.

Network validation: are the disease genes co-expressed? Does the 
network show dynamic homogeneity?   



DISTRIBUTION OF PEARSON CORRELATION COEFFICIENTS (PCCS) 
FOR THE COEXPRESSION PROFILES OF PAIRS OF GENES 

ASSOCIATED WITH THE SAME DISORDER

33 diseases
with PCC >0.6

Average PCC of all gene pairs belonging to the same disease 
(blu: randomly chosen genes)

are 812 links between disorders of the same class, an 8-fold
enrichment with respect to 107 ! 10 links obtained between the
same set of nodes in the randomized networks. This local functional
clustering accounts for the small size of the giant components
observed in the actual networks.

Disease-Associated Genes Identify Distinct Functional Modules. For
several disorders known to arise from mutations in any one of a few
distinct genes, the corresponding protein products have been shown
to participate in the same cellular pathway, molecular complex, or
functional module (21, 22). For example, Fanconi anemia arises
from mutations in a set of genes encoding proteins involved in DNA
repair, many of them forming a single heteromeric complex (23).
Yet, the extent to which most disorders and disorder classes
correspond to distinct functional modules in the cellular network
has remained largely unclear. If genes linked by disorder associa-
tions encode proteins that interact in functionally distinguishable
modules, then the proteins within such disease modules should
more likely interact with one another than with other proteins. To
test this hypothesis, we overlaid the DGN on a network of physical
protein–protein interactions derived from high-quality systematic
interactome mapping (6, 7) and literature curation (6). We found
that 290 interactions overlap between the two networks, a 10-fold
increase relative to random expectation (P " 10#6; Fig. 3a).

Genes associated with the same disorder share common cellular
and functional characteristics, as annotated in the Gene Ontology
(GO) (24). If the HDN shows modular organization, then a group
of genes associated with the same common disorder should share
similar cellular and functional characteristics, as annotated in GO.
To investigate the validity of this hypothesis, we measured the GO
homogeneity of each disorder (see SI Text) separately for each
branch of GO, biological process, molecular function, and cellular

component, finding significant elevation of GO homogeneity with
respect to random controls in all three branches (SI Fig. 8).

Disease genes encoding proteins that interact within common
functional modules should tend to be expressed in the same tissue.
To measure this, we introduced the tissue-homogeneity coefficient
of a disorder, defined as the maximum fraction of genes among
those belonging to a common disorder that are expressed in a
specific tissue in a microarray data set obtained for 10,594 genes
across 36 healthy tissues (25). We found that 68% of disorders
exhibited almost perfect tissue-homogeneity (Fig. 3b), compared
with 51% expected by chance (P " 10#5).

Finally, disease genes that participate in a common functional
module should also show high expression profiling correlation (26).
The distribution of Pearson correlation coefficients (PCCs) for the
coexpression profiles of pairs of genes associated with the same
disorder was shifted toward higher values compared with that of a
random control (Fig. 3c; P " 10#6, !2 test). Similarly, the average
PCC over all pairs of genes within a given disorder shows a
significant shift from the random reference (Fig. 3d), with a small
but clearly distinguishable peak in the distribution around PCC $
0.75. This peak corresponds to $33 disorders with average PCC %
0.6 for which all genes are highly coexpressed in most tissues,
including Heinz body anemia (PCC & 0.935), Bethlem myopathy
(PCC & 0.835), and spherocytosis (PCC & 0.656).

In summary, genes that contribute to a common disorder (i) show
an increased tendency for their products to interact with each other
through protein–protein interactions, (ii) have a tendency to be
expressed together in specific tissues, (iii) tend to display high
coexpression levels, (iv) exhibit synchronized expression as a group,
and (v) tend to share GO terms. Together, these findings support
the hypothesis of a global functional relatedness for disease genes
and their products and offer a network-based model for the
diseasome. Cellular networks are modular, consisting of groups of
highly interconnected proteins responsible for specific cellular
functions (21, 22). A disorder then represents the perturbation or
breakdown of a specific functional module caused by variation in
one or more of the components producing recognizable develop-
mental and/or physiological abnormalities.

This model offers a network-based explanation for the emer-
gence of complex or polygenic disorders: a phenotype often cor-
relates with the inability of a particular functional module to carry
out its basic functions. For extended modules, many different
combinations of perturbed genes could incapacitate the module, as
a result of which mutations in different genes will appear to lead to
the same phenotype. This correlation between disease and func-
tional modules can also inform our understanding of cellular
networks by helping us to identify which genes are involved in the
same cellular function or network module (21, 22).

Centrality and Peripherality. An early indication of the connection
between the structure of a cellular network and its functional
properties was the finding that in Saccharomyces cerevisiae highly
connected proteins or ‘‘hubs’’ are more likely encoded by essential
genes (15, 16). This prompted a number of recent studies (27, 28)
to formulate the hypothesis that human disease genes should also
have a tendency to encode hubs. Yet, previous measurements
found only a weak correlation between disease genes and hubs (29),
resulting in an important mystery: what is the role, if any, of the
cellular network in human diseases? Are disease genes more likely
to encode hubs in the cellular network?

Our initial analysis appears to support the hypothesis that disease
genes, given their impact on the organism, display a tendency to
encode hubs in the interactome (27, 28), finding that disease related
proteins have a 32% larger number of interactions (6, 7) with other
proteins (average degree) than the nondisease proteins (see SI Fig
9) and that high-degree proteins are more likely to be encoded by
genes associated with diseases than proteins with few interactions
(P & 1.6 ' 10#17; Fig. 4a). Next, we show, however, that despite this
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Fig. 3. Characterizing the disease modules. (a) Number of observed physical
interactions between the products of genes within the same disorder (red arrow)
and the distribution of the expected number of interactions for the random
control (blue) (P " 10#6). (b) Distribution of the tissue-homogeneity of a disorder
(red). Random control (blue) with the same number of genes chosen randomly is
shown for comparison. (c) The distribution of PCC "ijvalues of the expression
profiles of each disease gene pair that belongs to the same disorder (red) and the
control (blue), representing the PCC distribution between all gene pairs (P "
10#6). (d)DistributionoftheaveragePCCbetweenexpressionprofilesofallgenes
associated with the same disorder (red) is also shifted toward higher values than
the random control (blue) with the same number of genes chosen randomly (P "
10#6).

8688 ! www.pnas.org"cgi"doi"10.1073"pnas.0701361104 Goh et al.

P<10−6

Network validation: are the disease genes co-expressed? Does the 
network show dynamic homogeneity?   



The genes involved in the same disease:

1. Their products tend to interact in PPI networks

2. Have the tendency to be expressed together in 
the same tissues

3. Have high level of coexpression (dynamic 
homogeneity)

4. Tend to share the same GO terms



The analysis suggests: 

GLOBAL FUNCTIONAL INTERRELATION 
of disease genes and their products offering a
network-based functional explanation for 
complex and polygenic diseases

Validity of network model for the diseasome





Centrality and peripherality in the diseasome



Observations in Sacharomyces cerevisiae: hub proteins
Tend to be encoded by essential genes

Disease genes have higher number of interactions than
non-disease genes - higher average k of ≈ 30%
(Rual JF Nature 2005; Stelzl et al., Cell 2005)

Does disease genes encode hub proteins?



Do disease genes encode hub proteins?

2. Disease genes have the tendency to encode proteins 
with high k

Goh K et al. PNAS 2007;104:8685-
8690

The fraction of disease genes among those whose protein products that 
interact with k other proteins (a measure of the dependency of degree) 

Linear regression model

c2 test
Gray symbols are the linearly binned data 
points, whereas color corresponds to the 
statistically more uniform log-binned data
In statistics a bin — sometimes called a class 
interval — is a way of sorting data in a histogram. 
It’s very similar to the idea of putting data into 
categories.

Proteins encoded by all disease 
genes (1.777)

Fraction of disease nodes from the total of 
nodes (proteins) with that particular k.
Ex.: 40% of nodes with k=32 are disease 
genes



Scelto un grado K, sul punto corrispondente nell’asse Y 
c’e’ la frazione di nodi “disease” rispetto al totale che 
hanno quel grado K (la crocetta grigia). Cioè quanti sono 
i nodi disease che hanno grado K rispetto al totale dei 
nodi che hanno grado K. Per questo i valori dell’asse Y 
vanno da 0 a 1. Ad esempio in figura 4a con grado K=32 
c’e’ una crocetta grigia in corrispondenza del valore 0,4. 
Significa che presi tutti i nodi di grado 32, 0,4 è la 
frazione (cioè il 40%) di quelli che sono disease nodes. 
Cioè il 40% dei nodi di grado 32 sono disease nodes.

Le crocette grige indicano i valori reali, i puntini colorati 
sono invece il logaritmo degli stessi valori, in modo da 
rendere tutto più uniforme.

Explanation for the previous slide



! Geni essenziali per lo sviluppo embrionale se sono modificati
possono portare ad aborti spontanei nel primo trimestre di gravidanza.

Quindi non conosciamo tanti geni essenziali che sono anche “disease genes”
in utero nel primo trimestre di gravidanza !

Considerare i geni umani ortologhi dei geni murini che sono “embryonic lethal”
o inducono mortalità perinatale (mouse genome informatics - www.informatics.jax.org)

Jackson Labs: 1.267 
ortologhi murini letali di 
cui 398 disease genes 
umani (in rosso)

Are disease genes also essential proteins?

Goh K et al. PNAS 2007;104:8685-
8690

Human disease 
genes (1.777) 
(green):

1.379 non-essential

398 essential

Do disease genes encode hub proteins?



Orthologs are genes in different species that evolved 
from a common ancestral gene by speciation. 
Normally, orthologs retain the same function in the 
course of evolution. 



Which are the differences between essential and 
non-essential disease genes?

Essential disease genes have higher k comparing to 
non-essential genes

Does disease genes encode hub proteins?



Goh K et al. 
PNAS 2007

3. Essential proteins encoded by disease genes tend to be hubs

Proteins encoded by essential
genes (398)

Fractions of essential and non-essential genes  from the 
total of genes encoding proteins with k interactions

Does disease genes encode hub proteins?
Which are the differences between essential and 
non-essential disease genes?

Proteins encoded by non- essential
genes (1379)



Goh K et al. PNAS 2007;104:8685-8690

3. Essential proteins encoded by disease genes tend to be hubs
Fractions of essential and non-essential genes  from the 
total of genes encoding proteins with k interactions

Does disease genes encode hub proteins?
Which are the differences between essential and 
non-essential disease genes?

Proteins encoded by essential
genes (398)

Proteins encoded by all disease genes (1.777)



To carry on its basic functions, the cell needs to maintain the 
coordinated activity of important functional modules, driving in a 
relatively synchronized manner the expression patterns of the 
most important genes. 

Therefore, one expects that the expression pattern of both
essential and disease genes will be synchronized with a 
significant number of other genes.

Gene synchronization



Goh K et al. PNAS 2007;104:8685-8690

essential genes (398) non-essential genes (1379)

Are disease genes synchronized with other cell genes?

It was calculated the average gene coexpression coefficient ρi (ρi = 
ΣjPCCij ) between an essential (or nonessential disease) gene i and all 
other genes in the cell by calculating the PCCij values from healthy 
human tissue microarray measurements (Ge et al., 2005)

Does disease genes encode hub proteins?

ρ > 0.2 for 
highly 
synchronized 
genes

The fraction of 
essential genes 
(e) and 
nonessential 
disease genes 
(f) among those 
whose average 
PCC with other 
genes is〈ρ〉. 



Genomics. 2005 Aug;86(2):127-41.
Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in 
normal tissues.
Ge X, Yamamoto S, Tsutsumi S, Midorikawa Y, Ihara S, Wang SM, Aburatani H.

Abstract
A critical and difficult part of studying cancer with DNA microarrays is data interpretation. Besides the need for data 
analysis algorithms, integration of additional information about genes might be useful. We performed genome-
wide expression profiling of 36 types of normal human tissues and identified 2503 tissue-specific genes. We 
then systematically studied the expression of these genes in cancers by reanalyzing a large collection of published 
DNA microarray datasets. We observed that the expression level of liver-specific genes in hepatocellular carcinoma 
(HCC) correlates with the clinically defined degree of tumor differentiation. Through unsupervised clustering of 
tissue-specific genes differentially expressed in tumors, we extracted expression patterns that are characteristic of 
individual cell types, uncovering differences in cell lineage among tumor subtypes. We were able to detect the 
expression signature of hepatocytes in HCC, neuron cells in medulloblastoma, glia cells in glioma, basal and 
luminal epithelial cells in breast tumors, and various cell types in lung cancer samples. We also demonstrated that 
tissue-specific expression signatures are useful in locating the origin of metastatic tumors. Our study shows that 
integration of each gene's breadth of expression (BOE) in normal tissues is important for biological interpretation of 
the expression profiles of cancers in terms of tumor differentiation, cell lineage, and metastasis.

Useful published study to determine gene coexpression 



Confirming our expectation, for essential genes we find that genes 
that display high average coexpression ρ with all other genes are 
more likely to be essential than those that show small or negative ρ 
(P = 1.7 < 10−4). 

ρ > 0.2 means highly synchronized genes

However, nonessential disease genes show the opposite effect, 
being associated with genes whose expression pattern is 
anticorrelated or not-correlated with other genes, and 
underrepresented among the genes that are highly synchronized (ρ 
> 0.2) (P = 2.6 = 10−8). 

Thus, the expression pattern of nonessential disease genes appears to 
be decoupled from the overall expression pattern of all other genes, 
whereas essential genes have a tendency to be coupled to the rest of 
the cell.

Considerations on previous slide:



Are “housekeeping” genes (constitutive, present in all cells) also 
“disease genes”?

Goh K et al. PNAS 2007;104:8685-8690

Essential genes Non-essential genes

The FRACTION OF ESSENTIAL GENES AND NONESSENTIAL DISEASE 
GENES AMONG THOSE WHOSE TRANSCRIPT IS EXPRESSED IN N 

TISSUES (nT = nr. di tessuti)

Does disease genes encode hub proteins?



Housekeeping genes are genes required for the 
maintenance of basal cellular functions that are essential 
for the existence of a cell, regardless of its specific role in 
the tissue or organism.

They are expected to be expressed in all cells of an 
organism under normal conditions, irrespective of tissue 
type, developmental stage, cell cycle state, or external 
signal. 

Generalmente, essi codificano proteine ed enzimi fondamentali per 
la vita della cellula, e che pertanto devono essere sempre presenti. 
Sono presenti in tutte le cellule.

Alcuni esempi comuni di geni costitutivi sono, per esempio i geni 
che codificano la proteina actina, o enzimi quali le hexokinase.



Non-essential disease genes:

1. Tend to non associate with hubs

2. Correlate less with other genes 
expressed in a cell

3. Have the tendency to be 
expressed in less tissues

4. Are the majority of disease
genes

Essential disease genes:

1. Tend to associate with hubs

2. Correlate significantly with other genes
expressed in the cells

3. Have the tendency to be expressed in 
more tissues 

4. Are highly expressed as “housekeeping”
genes

5. Are a minority of disease genes

Conclusions of diseasome application:



Observations and hypotheses on HUBS (= nodes with high degree):

- Essential genes in utero tend to associate with hubs.

- Genes encoding hubs are older and evolve more slowly than
genes encoding non-hub proteins

- The absence of a hub is expected to affect many more other proteins
than would the absence of a non-hub protein



Barabasi et al., 2011

Localization of essential versus non-essential 
disease genes in the interactome

Essential genes:

1. Tend to be hubs

2.  Are localized in 
the functional 
center of the 
interactome



- Not all essential genes are “disease genes” (are a minority)
- Mutations in genes which are important for embrionic development do
not propagate in the human population and are not “disease genes”
- The majority of “disease genes” are NON-essential genes

- Essential genes are associated to hubs, are expressed in many tissues and 
tend to be localized at the center of the interactome
- Non-essential disease genes are not hubs, are tissue-specific and 
tend to be localized at the periphery of the interactome

Conclusions



1. Non-essential disease genes are more
peripheral in the cellular network from the 

functional and topological point of view. 
“Neutral” position

IMPORTANT FINAL CONCLUSIONS

2. Essential disease genes have a more 
central position in the cellular network 
from the functional and topological point of view.
“Central” position



1. The majority of disease genes are peripheral
and non-essential. Their mutations are less 
important for the survival.

IMPORTANT GENERAL CONCLUSIONS

2.  Essential disease genes are important in 
utero, have a central position and are largely 
expressed in the tissues. Their mutations are 
lethal.







Network theory             network medicine

Nods: proteins, metabolites, diseases
Links: protein-protein interactions; metabolic 
reactions; shared genes

Elements of network theory:

1. Degree distribution e hubs
2. Modules
3. Phenomenon of small-world
4. Motifs
5. Betweeness centrality



1. Degree distribution e hubs



P(k)~ k−γ

y= degree exponent



1. Degree distribution e hubs

Party hubs

Date hubs



Albert-László Barabási

https://www.google.com/search
?client=safari&rls=en&q=albert+
laszlo+barabasi&ie=UTF-
8&oe=UTF-8



2. Moduls = highly interconected areas in a network



3. Small-world phenomena
= there are relatively “short paths” between the 
nodes

One node dysfunction 
can influence the
global network



4. Motifs 
= patterns (subgraphs) that occur more frequently in real 
networks than in random networks generated at computer

are likely to be associated with some optimized biological 
function 



4. Motifs – esempio di bifan motif  
The FASEB Journal • Research Communication

Network topology determines dynamics of the
mammalian MAPK1,2 signaling network: bifan motif
regulation of C-Raf and B-Raf isoforms by FGFR
and MC1R

Melissa Muller, Mandri Obeyesekere, Gordon B. Mills, and Prahlad T. Ram
Department of Systems Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA

ABSTRACT Activation of the fibroblast growth factor
(FGFR) and melanocyte stimulating hormone (MC1R)
receptors stimulates B-Raf and C-Raf isoforms that
regulate the dynamics of MAPK1,2 signaling. Network
topology motifs in mammalian cells include feed-for-
ward and feedback loops and bifans where signals from
two upstream molecules integrate to modulate the
activity of two downstream molecules. We computation-
ally modeled and experimentally tested signal process-
ing in the FGFR/MC1R/B-Raf/C-Raf/MAPK1,2 net-
work in human melanoma cells; identifying 7 regulatory
loops and a bifan motif. Signaling from FGFR leads to
sustained activation of MAPK1,2, whereas signaling
from MC1R results in transient activation of MAPK1,2.
The dynamics of MAPK activation depends critically on
the expression level and connectivity to C-Raf, which is
critical for a sustained MAPK1,2 response. A partially
incoherent bifan motif with a feedback loop acts as a
logic gate to integrate signals and regulate duration of
activation of the MAPK signaling cascade. Further
reducing a 106-node ordinary differential equations
network encompassing the complete network to a
6-node network encompassing rate-limiting processes
sustains the feedback loops and the bifan, provid-
ing sufficient information to predict biological re-
sponses.—Muller, M., Obeyesekere, M., Mills, G. B.,
Ram., P. T. Network topology determines dynamics
of the mammalian MAPK1,2 signaling network: bifan
motif regulation of C-Raf and B-Raf isoforms by
FGFR and MC1R. FASEB J. 22, 1393–1403 (2008)

Key Words: computational modeling ! proteomics ! melanoma

B-Raf is mutationally activated in 60–80% of
malignant melanomas as well as a large number of
benign nevi, indicating a role in the initiation of
malignant melanoma. Melanoma is the most aggressive
form of skin cancer. Recently, protein kinase inhibitors
have demonstrated remarkable clinical benefit in dis-
eases that have been resistant to traditional chemother-
apy, including chronic myelogenous leukemia (CML),
gastrointestinal stromal tumors (GISTs), HER2/Neu-
amplified breast cancer, and renal cell carcinoma (1–

8). Each of these diseases is characterized by genetic
aberrations that activate protein signaling networks,
which appears to be critical to the efficacy of protein
kinase inhibitors. Activating mutations of B-Raf result
in constitutive activation (phosphorylation) of MAPK
(9, 10). This pathway is also activated by mutation of
N-Ras, which occurs in !15% of melanomas (11, 12).
Mutant N-Ras activates the RAS-RAF-MEK-MAPK as well
as the PI3K-AKT-mTOR pathways in vitro. Mutations of
B-Raf and N-Ras appear to be mutually exclusive in
melanoma tumors and cell lines (12–14).

The high prevalence of activating mutations of com-
ponents of the RAS-RAF-MEK-MAPK pathway suggests
that it may be an effective therapeutic target in mela-
noma. The first B-Raf inhibitor to be used in clinical
trials is sorafenib (Nexavar®), also known as BAY43–
9006 (15). Sorafenib is a small molecule inhibitor of
wild-type B-Raf, mutant (V600E) B-Raf, and a number
of tyrosine kinase receptors (16). A Phase II single-
agent study in patients with metastatic melanoma
yielded disappointing results (16). Among 20 patients,
only 1 partial response was observed, and 3 patients had
stable disease. The lack of a complete understanding of
the underlying homeostatic mechanisms regulating the
RAS/RAF/MEK/MAPK pathway and the effects of B-
Raf mutations on this pathway may contribute to the
failure of monotherapy targeting individual compo-
nents of the pathway. We thus sought to further define
the homeostatic mechanisms controlling information
transfer through the RAS/RAF/MEK/MAPK pathway
(17).

Analysis of mammalian signaling networks shows that
a large percentage of signaling subnetwork motifs are
feed-forward/feedback loops and bifans (18). A recent
analysis of network motifs of a 545 component 1259
interaction mammalian signaling network revealed 300
feed-forward loops and 1000 bifan subnetworks (18).
The role these network motifs play in regulating signal-
ing is not entirely clear. These subnetwork motifs could

1 Correspondence: Department of Systems Biology, Unit
950, UT M.D. Anderson Cancer Center, 7435 Fannin St.,
Houston, TX 77054, USA. E-mail: pram@mdanderson.org

doi: 10.1096/fj.07-9100com

13930892-6638/08/0022-1393 © FASEB

Activation of the fibroblast growth factor (FGFR) and melanocyte stimulating hormone (MC1R) receptors stimulates B-Raf and C-Raf
isoforms that regulate the dynamics of MAPK1,2 signaling in human melanoma cells. 
A) Detailed network model of the FGFR-MC1R-B-Raf-C-Raf-MAPK1,2 network based on the experimental data. B) Connection 
diagram shows the reduced network structure of the FGFR-MC1R-B-Raf-C-Raf-MAPK1,2 network dynamics of MAPK1,2 activity. 

partially 
incoherent 
bifan motif



5. Betweeness centrality 
= nodo capace di mettere in comunicazione nodi o zone 
distinte della rete stessa. 

High betweeness centrality means high number of shortest 
paths (Un valore alto di betweenness indica la capacità del 
nodo di funzionare come nodo comunicatore o “collo di 
bottiglia” - “bottleneck”).

Bottleneck niodes are crossesd by many "shortest paths”; are like bridges or 
tunnels in  a highway network



Tyoes of “bottleneck” nodes Cyclin-dependent kinase bottleneck
2007

Are bottlenecks important because they are hubs or because 
they have high betweeness?

The topological position of Cak1 (cyclin-
dependent kinase-activating kinase) suggest this 
gene/molecule is essential for the cell



Yu et al.,PLoS Computational Biology, 2007:

In biological networks “bottleneck-ness” is a much more 
significant indicator of essentiality than degree (i.e., 
"hub-ness"). 

Bottlenecks are, in fact, key connector proteins with 
functional and dynamic properties. 
They are more likely to be essential proteins

Bottlenecks correspond to the dynamic components of the 
interaction network; they are significantly less well 
coexpressed with their neighbors than non-bottlenecks 

5. Betweeness centrality 



Hypotheses and principles of network medicine

1. Hubs

2. Disease module

3. Local hypothesis

4. Network parsimony principle

5. Shared components hypothesis



- Cellular components associated with a specific disease tend to 
Cluster in the same network “neighbourhood”

- Each disease is characterized by a module (“neighbourhood”) 
Inside the interactome

Hypotheses and principles of network medicine:

2. Disease modules



Barabasi et al., 2011

2. Disease modules

Topological modules are local dense  “neighbourhoods”
in a network (nodes inside a module have higher 
probability to interact compared to other nodes).

Are detected by clustering alghoritms

Are “pure” network properties? 



Barabasi et al., 2011

2. Disease modules

Each node has its own function

Functional modules are node 
aggregates that are involved in the
same biological function 

Nodes involved in the same 
biological function tend 
to interact in a network



Barabasi et al., 2011

2. Disease modules

Disease modules are a group (cluster) of nodes 
contributing to a cellular function; their 
perturbation (mutations, deletions, 
variation of gene expression, etc) is linked to
a particular disease phenotype.



2. Disease modules

Hypotheses in network medicine:

- Topological modules correspond with functional
modules

- The disease is viewed as a perturbation of a 
functional module; 
Thus, functional modules are also disease modules

- Topological, functional and disease modules 
often OVERLAPP



2. Disease modules

Further considerations:

1. Disease modules are not IDENTICAL to, but have
high probability to overlap to topological and 
functional modules

2. A disease module is defined in relation to a 
Specific disease; each disease has its own module

3. A gene, a protein or a metabolite can be involved
in several disease modules, thus, some disease
modules may overlap



Steps for the identification of disease modules (a-e)

a. Interactome reconstruction

b. Disease gene identification (“disease seed”)

c. Disease module identification

d. Pathway identification (Identificazione di 
vie molecolari specifiche )

e. Disease module validation



a. Interactome reconstruction
(of a cell or tissue)

b. Disease gene (seed) identification
(genes associated to disdease obtained form
linkage analysis, genome-wide association
studies (GWA) and other resources
(literature, microarrays)
- Proteins associated to disease

(esperiments, proteomics)
- Metabolites (esperiments, metabolomics)

- Esperiments

Steps for the identification of disease modules (a-e)



Genome-wide association study (GWA study, o GWAS), noto 
anche come whole genome association study (WGA study, or 
WGAS) = esaminare il genoma di diversi individui (es malati versus 
sani) per capire come i geni variano da individuo a individuo. 
- Le variazioni nei geni sono associate a diversi tratti (malattia). 
- Si fanno tests per single DNA mutations - SNPs

Dicembre 2010: >1200 human GWAS; sono state esaminate e trovate > 
200 malattie e tratti e trovati > 4.000 SNPs.

Linkage analysis = studio che stabilisce il linkage tra geni. 
Genetic linkage = la tendenza dei certi loci o alleli di essere 
ereditati assieme a causa della loro localizzazione uno vicino ad 
altro sullo stesso cromosoma.
Loci genetici che sono vicini fisicamente sullo stesso cromosoma 
tendono a rimanere assieme durante la meiosi e quindi sono 
geneticamente “linked”.



c. Disease module identification
(subnetwork containing nodes 
associated to the specific disease

clustering tools

Steps for the identification of disease modules



d. Pathway identification 
(Identificazione di vie 
molecolari specifiche - quando 
il modulo è molto grande); 
- la loro disfunzione è 
responsabile della malattia
Si assume che tra i nodi della 
pathway esiste la shortest 
path - network “parsimony 
principle”

Steps for the identification of disease modules



e. Disease module validation

Functional homogeneity
- Gene ontology (1) biological processes, 

2) cellular components and 3) molecular functions)
Tissue specificity

Dynamic homogeneity 
- Co-expression

Other tests:
- GWA (SNPs identified for the nodes/genes)

Steps for the identification of disease modules



e. Disease module validation:

Test the predictions (make experiments!):

1. Gene expression data, proteomics, metabolomics, etc
2. Validate molecules in in vitro and in vivo assays
3. Drug targets

Analysis of disease module:

Predictions on:
-Disease genes
-Disease pathways
-Drug targets

Steps for the identification of disease modules



Hypotheses and principles of network medicine

1. Hubs

2. Disease module hypothesis

3. Local hypothesis

4. Network parsimony principle

5. Shared components hypothesis



Ipotesi e principi organizzativi della network medicine:

3. Local hypothesis

Se alcuni componenti di un disease network 
vengono identificati, altri componenti che sono 
implicati in quella malattia possono essere 
identificati in base alla “network-vicinity”



- Proteins involved in the same disease have the tendency to 
interact between them

- If a gene (or protein) is involved in a biological process or disease, 
its direct interactors may have the same role in the process/disease

- Mutations in interacting proteins lead to similar disease phenotypes

- Genes correlated to diseases with similar phenotypes have high 
probability to interact in a network

Hypotheses and principles of network medicine:

3. Local hypothesis



Hypotheses and principles of network medicine:

1. Hubs

2. Disease module hypothesis

3. Local hypothesis

4. Network parsimony principle

5. Shared components hypothesis



4. Network parsimony principle = The molecular 
pathways involved in a disease often coincide with the 
“shortest path” between network components 
associated to the disease

Ipotesi e principi organizzativi della network medicine:



Minimo 
numero di 

archi (edges)
fra due nodi



Le reti biologiche
Hanno una average shortest path di 5-6; 

sono reti compatte



5. Shared components hypothesis = Diseases that 
share cellular components (genes, proteins, 
metabolites, miRNAs) show phenotipic similarities and 
comorbidity 

Ipotesi e principi organizzativi della network medicine:



Per epigenetica si intende una qualunque attività 
di regolazione dei geni tramite processi chimici 
che non comportino cambiamenti nel codice del 
DNA, ma possono modificare il fenotipo 
dell’individuo e/o della progenie.

L’epigenetica studia la trasmissione di caratteri 
ereditari non attribuibili direttamente alla 
sequenza di DNA.



Malattia

Malattia localizzata - riguarda una parte del corpo

Malattia disseminata - è estesa ad altre parti del corpo

Malattia sistemica - concerne tutto il corpo



2. Genetic interaction networks - due geni 
sono linked se il fenotipo del doppio mutante è 
diverso rispetto al fenotipo dei singoli mutanti.

Altri tipi di rete

Le interazioni genetiche possono essere negative o positive



Malattia = risultato di meccanismi combinatoriali ----
diversi difetti e perturbazioni nel modulo di 
malattia e nella rete  ---- diversi fenotipi
patologici di malattia

1. Malattie poligeniche 
2. Malattie monogeniche

Esempio: l’anemia a cellule falciformi
Mutazione E6V

- anemia severa o moderata
- crisi dolorose 
- osteonecrosi
- sindrome polmonaria acuta
- ictus
- ischemia renale
- ittero
- infezioni



OMEOSTASI IN BIOLOGIA

Claude Bernard (1813-1878) - Un'introduzione allo studio della 
medicina sperimentale (1865)
- concetto che la vita si svolge in quanto l’organismo ha la 
possibilità di adattare la funzione dei suoi organi e sistemi agli 
stimoli esogeni in modo da riuscire a mantenere costante il 
proprio ambiente interno, “le milieu intérieur”

Walter Bradford Cannon (1871-1945) - The wisdom of the 
body (1932)
- concetto di omeostasi nel 1926 (homoios = simile, e 
stasis = posizione) - in riferimento alla capacità del corpo di 
regolare la composizione e il volume del sangue e, di 
conseguenza, di tutti i fluidi extracellulari in cui sono immerse 
le cellule



Tassonomia

La tassonomia (dal greco, taxis, "ordinamento", e nomos, "norma" o "regola") è la 
disciplina della classificazione. La tassonomia biologica = i criteri con cui si 
ordinano gli organismi in un sistema di classificazione composto da una gerarchia di 
taxa.

In biologia, un taxon (plurale taxa) o unità tassonomica, è un raggruppamento di 
organismi reali, distinguibili morfologicamente e geneticamente da altri e riconoscibili 
come unità sistematica, posizionata all'interno della struttura gerarchica della 
classificazione scientifica. 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy

http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy


Cosa sono i microRNAs?

= post-transcriptional regulators

MicroRNA
I miRNA sono piccole 
molecole di RNA, che 
svolgono diverse funzioni, la 
più nota attualmente è una 
regolazione post-
trascrizionale. Si legano a 
sequenze complementari di 
mRNA e bloccano la 
traslazione (gene silencing).



1. I nodi e le interazioni devono essere 
considerate nel contesto specifico tessutale

2. L’interactoma umano è incompleto e “noisy”

3. Le conoscenze attuali  delle reti nelle 
malattie si riferiscono soprattutto a reti 
INTRACELLULARI; esiste una mancanza di 
dati riguardo le reti molecolari che 
connettono cellule, tessuti e organi

Le reti nelle malattie

Considerazioni e limiti



2. Disease modules

Further considerations:

1. Disease modules are not IDENTICAL but have
High probability to overlap to topological and 
functional modules

2. A disease module is defined in relation to a 
Specific disease; each disease has its own module

3. A gene, a protein or a metabolite can be involved
in several disease modules, thus, some disease
modules may overlap



Tappe per identificare e validare i 
moduli di malattia (a-e)

a. Interactome reconstruction

b. Disease gene identification (“disease seed”)

c. Disease module identification

d. Pathway identification (Identificazione di 
vie molecolari specifiche )

e. Disease module validation



Tappe per identificare e validare i 
moduli di malattia (a-e)

a. Interactome reconstruction
(della cellula o tessuto d’interesse)

b. Disease gene (seed) identification
(geni associati alla malattia ottenuti da 
linkage analysis, studi genome-wide 
association (GWA) e  altre risorse 
(letteratura, microarrays)
- Proteine associate alla malattia

(esperimenti di proteomica)
- Metaboliti (esperimenti di metabolomica)

- Esperimenti



Genome-wide association study (GWA study, o GWAS), noto 
anche come whole genome association study (WGA study, or 
WGAS) = esaminare il genoma di diversi individui (es malati versus 
sani) per capire come i geni variano da individuo a individuo. 
- Le variazioni nei geni sono associate a diversi tratti (malattia). 
- Si fanno tests per single DNA mutations - SNPs

Dicembre 2010: >1200 human GWAS; sono state esaminate e trovate > 
200 malattie e tratti e trovati > 4.000 SNPs.

Linkage analysis = studio che stabilisce il linkage tra geni. 
Genetic linkage = la tendenza dei certi loci o alleli di essere 
ereditati assieme a causa della loro localizzazione uno vicino ad 
altro sullo stesso cromosoma.
Loci genetici che sono vicini fisicamente sullo stesso cromosoma 
tendono a rimanere assieme durante la meiosi e quindi sono 
geneticamente “linked”.



Tappe per l’identificazione e validazione dei 
moduli di malattia

c. Disease module identification
(sottorete che 
contiene i nodi associati alla 
malattia). 

clustering tools



Tappe per l’identificazione e validazione dei 
moduli di malattia

d. Pathway identification 
(Identificazione di vie 
molecolari specifiche - quando 
il modulo è molto grande); 
- la loro disfunzione è 
responsabile della malattia
Si assume che tra i nodi della 
pathway esiste la shortest 
path - network “parsimony 
principle”



Tappe per l’identificazione e validazione dei 
moduli di malattia

e. Disease module validation

Omogeneità funzionale
- Gene ontology (1) biological processes, 

2) cellular components and 3) molecular functions)
- Specificità tessutale

Omogeneità dinamica
- Co-espressione

Altri tests:
- GWA (SNPs nei componenti cellulari predetti)



Tappe per l’identificazione e validazione dei 
moduli di malattia

e. Disease module validation:

Testare le predizioni (fare esperimenti!):

1. Gene expression data, proteomics, metabolomics, etc
2. Validare le molecole in saggi in vitro e in vivo
3. Drug targets

L’analisi del modulo di malattia:

Predizioni su:
-Disease genes
-Disease pathways
-Drug targets



Ipotesi e principi organizzativi della network medicine:

1. Hubs

2. Disease module hypothesis

3. Local hypothesis

4. Network parsimony principle

5. Shared components hypothesis



Ipotesi e principi organizzativi della network medicine:

3. Local hypothesis

Se alcuni componenti di un disease network 
vengono identificati, altri componenti che sono 
implicati in quella malattia possono essere 
identificati in base alla “network-vicinity”



- Le proteine coinvolte nella stessa malattia hanno la tendenza di 
interagire tra di loro. 

- Se un gene (o una proteina, etc) è coinvolta in un processo biologico o
malattia, i suoi interratori diretti possono avere lo stesso ruolo nello 
stesso processo/malattia

- Mutazioni in proteine interagenti spesso portano a fenotipi simili di 
malattia

- Geni che sono correlati con malattie con fenotipi simili hanno alta 
probabilità di interagire tra di loro

Ipotesi e principi organizzativi della network medicine:

3. Local hypothesis



Ipotesi e principi organizzativi della network medicine:

1. Hubs

2. Disease module hypothesis

3. Local hypothesis

4. Network parsimony principle

5. Shared components hypothesis



4. Network parsimony principle = Le vie molecolari 
implicate nella malattia spesso coincidono con le 
“shortest path” tra i componenti della rete associati alla 
malattia. 

Ipotesi e principi organizzativi della network medicine:



Minimo 
numero di 

archi (edges)
fra due nodi



Le reti biologiche
Hanno una average shortest path di 5-6; 

sono reti compatte



5. Shared components hypothesis = Le malattie che 
condividono componenti cellulari (geni, proteine, 
metaboliti, miRNAs) mostrano similarità fenotipiche e 
comorbidity 

Ipotesi e principi organizzativi della network medicine:



Methods for disease gene identification

C. Network based tools:

1. Linkage methods
2. Disease module-based methods
3. Diffusion-based methods

A. Classical Linkage studies
B. GWA
C. Network based tools



Genome-wide association study (GWA study, o GWAS), noto 
anche come whole genome association study (WGA study, or 
WGAS) = esaminare il genoma di diversi individui (es malati versus 
sani) per capire come i geni variano da individuo a individuo. 
- Le variazioni nei geni sono associate a diversi tratti (malattia). 
- Si fanno tests per single DNA mutations - SNPs

Dicembre 2010: >1200 human GWAS; sono state esaminate e trovate > 
200 malattie e tratti e trovati > 4.000 SNPs.

Linkage analysis = studio che stabilisce il linkage tra geni. 
Genetic linkage = Linked genes sit close together on a 
chromosome, making them likely to be inherited together (la 
tendenza dei certi loci o alleli di essere ereditati assieme a causa 
della loro localizzazione uno vicino ad altro sullo stesso 
cromosoma). Loci genetici che sono vicini fisicamente sullo stesso 
cromosoma tendono a rimanere assieme durante la meiosi e 
quindi sono geneticamente “linked”.



Metodi di identificazione di geni implicati nella malattia 

1. Linkage methods

Genes located in the linkage interval of a disease whose 
protein products (labelled P1, P2, and so on) interact with 
a known disease-associated protein are considered likely 
candidate disease genes (assume that the direct 
interaction partners of a disease protein are likely to be 
associated with the same disease ).

Network based tools:



1. Linkage methods

Linkage-based methods are based on the assumption that proteins that interact 
directly tend to be involved in the same cellular process, thus their mutations 
may lead to similar disease phenotypes.

Le proteine che interagiscono direttamente con una proteina coinvolta in una 
malattia sono probabilmente associate alla stessa malattia



2. Disease module-based methods

Metodi di identificazione dei geni implicati nella malattia 

a. Interactome reconstruction

b. Disease gene identification (“disease seed”)

c. Disease module identification

d. Pathway identification (Identificazione di 
vie molecolari specifiche )

e. Disease module validation



Metodi di identificazione dei geni implicati nella malattia 

2. Disease module-based methods
Tutti i componenti cellulari che appartengono allo stesso 
modulo funzionale o di malattia hanno probabilità di 
essere coinvolti nella stessa malattia

Tuttavia:

1. Le interazioni cellulari delle molecole coinvolte 
nelle malattie sono poco conosciute

2. Sono necessari altri esperimenti



Metodi di identificazione dei geni implicati nella malattia 

3. Diffusion-based methods

Starting from proteins that are known to be associated with a disease, a
random walker visits each node in the interactome with a certain
probability. 
The outcome of this algorithm is a disease-association
score that is assigned to each protein, that is, the
likelihood that a particular protein is associated with the
disease. 

Prioritization algoritms:
1) Random walk 
2) CIPHER
3) PRINCE



3. Diffusion-based methods

Algoritmi “Random walk” e “PRINCE”

Metodi di identificazione dei geni implicati nella malattia 

2010

Prioritize proteins and 
interactions on the basis 
of their potential 
involvement in the 
particular disease



3. Diffusion-based methods

Algoritmo Random walk
In matematica, la passeggiata aleatoria è la formalizzazione dell'idea di 
prendere passi successivi in direzioni casuali (succession of random steps 
in random/casual direction)

(Kohler et al. : il metodo è meglio degli algoritmi basati sulle 
interazioni dirette oppure shortest path)
Studio effettuato da Kohler et al., 2008:

1.Input: 110 disease genes da OMIM più altri geni correlati 
(literature, databases) per un totale di 783 geni
2.Per ogni gene sono stati considerati circa 100 geni candidati più 
vicini nel loro linkage interval
3. PPI network (PPI verificate sperimentalmente o predette): grafo    
non-direzionato ottenuto con: HPRD, BIND, BioGrid, IntACT, DIP, 
STRING. 

4. Random walk algoritm per identificare nuovi disease genes

Metodi di identificazione dei geni implicati nella malattia 



3. Diffusion-based methods
Random walk algoritm

Kohler S et al., The American Journal of Human Genetics 82, 949-958, April 2008

Prioritizzazione dei geni (Disease-Gene Prioritization)

1. Tutti i geni candidati contenuti nel linkage interval sono stati mappati nella PPI 

2. Score a ogni candidato in base alla localizzazione della proteina in relazione ai prodotti genici coinvolti nelle 
malattie usando misure di distanza sul global network (random walk). 

3. Rank per i geni nel linkage interval  in base allo score per definire una lista di priorità (prioritizzare i geni)

da validare in futuri esperimenti.

Metodi di identificazione dei geni implicati nella malattia 



Sindrome linfocitaria di Bare – i geni noti e i geni del linkage interval sono stati mappati nel PPI Network
Il PPI associato alla sindrome di Bare tipo 1, comprende i geni TAP1, TAP2, and TAPBP (in rosso). Il metodo ha identificato i 
geni PSMB8 e PSMB9 (giallo) come potenziali disease genes nello stesso linkage interval. 

3. Diffusion-based methods

Random walk algoritm

Metodi di identificazione dei geni implicati nella malattia 

Kohler S et al., The American Journal of Human Genetics 82, 949-958, April 2008

http://www.ncbi.nlm.nih.gov/omim

http://www.ncbi.nlm.nih.gov/omim


3. Diffusion-based methods

PRINCE (PRIoritizatioN and Complex Elucidation)- metodo basato sul network 
globale che prioritizza disease genes e “inferisce” associazioni proteiche 
complesse. 
Input: phenotypic similarities between diseases and PPI networks (HPRD) 
- Usa un algoritmo iterativo “propagation-based” (iterative process)

Metodi di identificazione dei geni implicati nella malattia 

Starting principle: GENES CAUSING THE SAME 
OR SIMILAR DISEASES TEND TO LIE CLOSE TO 
ONE ANOTHER IN A NETWORK OF PROTEIN-
PROTEIN OR FUNCTIONAL INTERACTIONS. 



3. Diffusion-based methods

PRINCE (PRIoritizatioN and Complex Elucidation)

Vanunu O. et al., PLOS Comput. Biol. 2010

Query disease: Q
d1-d5 malattie che presentano similarità fenotipiche
p2, p4, p9 = proteine codificate dai 
disease genes
p1-11 set di proteine del PPI network dello stesso 
intervallo di linkage

Metodi di identificazione dei geni implicati nella malattia 

A= il flusso dopo prima iterazione (info iniziale)
B= lo score dopo varie iterazioni; lo score di 
ogni proteina (intensità colore) in base al flusso
che converge su ogni proteina
- quale p ha lo score più alto ed è il candidato migliore?



Circular nodes represent proteins and their connecting edges represent protein-protein interactions. Diseases are 
denoted by square nodes, connected by phenotypic similarity edges. Green dashed edges represent known 
gene-disease associations; red edges connect a disease to a gene that lies within its associated genomic interval. 

Complessi inferiti con PRINCE

Vanunu O. et al., PLOS Comput. Biol. 2010

Query

Hereditary Prostate Cancer 
type 8  (HPC8)

OMIM 602759 (1q42.2-q43);  EXO(exonuclease)1 (1q42-q43)

Figure 3. Case studies of inferred complexes. Examples of inferred protein complexes and their associated diseases. Circular nodes represent
proteins and their connecting edges represent protein-protein interactions. Diseases are denoted by square nodes, connected by phenotypic
similarity edges. Green dashed edges represent known gene-disease associations; red edges connect a disease to a gene that lies within its associated
genomic interval. The complexes were generated for the query diseases (A) Ataxia-Telangiectasia, (B) Hereditary Prostate Cancer type 8 and (C)
MOPD-I.
doi:10.1371/journal.pcbi.1000641.g003

PRINCE: Associating Genes & Complexes with Disease

PLoS Computational Biology | www.ploscompbiol.org 5 January 2010 | Volume 6 | Issue 1 | e1000641

- The gene coding for EXO1 is located at genetic locus 1q43, which lies within 
the region associated with HPC8 (1q42.2-q43).  
- EXO1 was ranked first by PRINCE in this interval. In this case, the inferred 
protein complex provides support also to the prediction that EXO1 is a causal 
gene for prostate cancer.



Performance comparison for PRINCE, Random Walk and CIPHER in a leave-one-out cross-validation test over 1,369 
diseases with a known causal gene. The figure shows recall versus precision when considering the top  proteins for 

various values of k.

Performance degli algoritmi di prioritizzazione

Vanunu O. et al., PLOS Comput. Biol. 2010



1. Linkage methods (interazioni dirette; ipotesi locale)
2. Disease module-based methods(neighborhood di 

disease genes; ipotesi del modulo di malattia)
3. Diffusion-based methods (intera topologia della 

rete; parsimony principle)

Metodi di identificazione dei geni implicati nella malattia 




