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Raffaello Sanzio, La Scuola di Atene (1509-1511)



R a f f a e l l o S a n z i o : “ L a S c u o l a d i 
Atene“ (1509-1511) 

Central detail, the two main philosophers of 
ancient times: Plato and Aristoteles. 

Plato, painted with the likeness of Leonardo 
da Vinci, holding in his left hand his work 
“Timaeus" and pointing to the sky with a 
finger (indicating the super-celestial, the area 
beyond the sky, where mental ideas do 
reside), while Aristoteles holds the “Ethics” 
and aimed his palm toward the ground, 
contacting the earthly world and the human 
will to study the world of nature and being in 
contact with it. 

The painting illustrates the basic principle of 
Systems Biology, founded on the marriage 
between “mathematical abstraction” (the 
super-celestial, populating the world of 
Platonic ideas) and Aristotelian ”empiricism”, 
based on experimental observation of nature.



It is not a mathematics class! 

It is not a bioinformatics class! 

It is not a class of nonlinear physical systems!



Systems Biology is an highly integrated, 

multidisciplinary, discipline that is concerned with 

studying complex biological systems (livings). 

The final goal is to identify the “emergent 

properties” of a biological system! 

(“theoretical biology”, “integrative biology”, 

“network biology”, “multidimensional biology”, 

“network medicine”, “personalised medicine, 

“precision medicine” etc.”)
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■ Abstract Systems biology studies biological systems by systematically perturb-
ing them (biologically, genetically, or chemically); monitoring the gene, protein, and
informational pathway responses; integrating these data; and ultimately, formulating
mathematical models that describe the structure of the system and its response to in-
dividual perturbations. The emergence of systems biology is described, as are several
examples of specific systems approaches.

INTRODUCTION

Perhaps the most important consequence of the Human Genome Project is that
it is pushing scientists toward a new view of biology—what we call the systems
approach. Systems biology does not investigate individual genes or proteins one
at a time, as has been the highly successful mode of biology for the past 30
years. Rather, it investigates the behavior and relationships of all of the elements
in a particular biological system while it is functioning. These data can then be
integrated, graphically displayed, and ultimately modeled computationally. How
has the Human Genome Project moved us to this new view? It has done so by
catalyzing a new scientific approach to biology, termed discovery science; by
defining a genetic parts list of human andmanymodel organisms; by strengthening
the view that biology is an informational science; by providing us with powerful
new high-throughput tools for systematically perturbing andmonitoring biological
systems; and by stimulating the creation of new computational methods.

Discovery Science

The Human Genome Project was one of the first modern biological endeavors to
practice discovery science. The objective of discovery science is to define all of
the elements in a system and to create a database containing that information. For
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Abstract
Systems biology provides a framework for assembling models of biolog-
ical pathways from systematic measurements. Since the field was first
introduced a decade ago, considerable progress has been made in tech-
nologies for global cell measurement and in computational analyses of
these data to map and model cell function. It has also greatly expanded
into the translational sciences, with approaches pioneered in yeast now
being applied to elucidate human development and disease. Here, we
review the state of the field with a focus on four emerging applications
of systems biology that are likely to be of particular importance during
the decade to follow: (a) pathway-based biomarkers, (b) global genetic
interaction maps, (c) systems approaches to identify disease genes, and
(d ) stem cell systems biology. We also cover recent advances in soft-
ware tools that allow biologists to explore system-wide models and to
formulate new hypotheses. The applications and methods covered in
this review provide a set of prime exemplars useful to cell and develop-
mental biologists wishing to apply systems approaches to pathways of
interest.
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Complex systems theory is concerned with identifying and characterizing
common design elements that are observed across diverse natural, techno-
logical and social complex systems. Systems biology, a more holistic
approach to study molecules and cells in biology, has advanced rapidly in
the past two decades. However, not much appreciation has been granted
to the realization that the human cell is an exemplary complex system.
Here, I outline general design principles identified in many complex sys-
tems, and then describe the human cell as a prototypical complex system.
Considering concepts of complex systems theory in systems biology can
illuminate our overall understanding of normal cell physiology and the
alterations that lead to human disease.

1. The science of complex systems theory
Science and technology allow us to understand our environment as well as
manipulate it and create new environments and new systems. This led
humans to emerge out of nature, and recently to create new complex worlds
that highly resemble natural systems [1]. Human-made systems often follow
the same design principles governing natural systems. The most important of
these design principles is evolution by natural selection [2]. However,
human-made systems are not exactly the same as those created by nature. We
are gaining an increasing ability to create new complex environments and
new machines that perform as well as, or even better than, natural organisms
[3]. Man-made complex systems, such as stock markets, or multi-user social
online networks, and technologies that can be used to collect and process
increasing amounts of data offer us an opportunity to better observe and under-
stand complex systems, natural or man-made. We can increasingly measure the
activity of the variables that constitute these systems. This provides a better
glimpse at the quantity and connectivity of most variables that control a com-
plex system. When all these variables work together, they make up a system
that appears to us as one unit that is alive.

We are beginning to realize that, in general, complex systems, man-made or
natural, share many universal design patterns; concepts and principles of
design that reappear in diverse, seemingly unrelated systems [4,5]. These
design patterns are the essential elements for building successful complex sys-
tems that can function, compete, survive, reproduce and evolve for long periods
through multiple generations towards increased fitness and overall growth. The
science of complex systems theory attempts to gain an understanding about
these emerging repeating design principles that reappear in different natural
and man-made complex systems and environments [6]. The goal of complex
systems science is to define more precisely these properties towards a greater
understanding of complex systems as a whole, beyond the understanding of
one specific system, or one specific design concept. Better understanding
these universal principles will enable us to better digest the rapid changes
that occur around us due to technological and social evolution [3]. To study
and understand complex systems, when possible, researchers conduct

& 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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The cell as complex dynamic system



Systems Biology - general concepts - foundations: 

1) Complexity: definition, origin and nature of complexity in biology 
2) The “emergent properties” of biological systems: the cellular and molecular circuits 
3) Science based on thesis and the deductive method; science based on experimental data 
      the inductive method 
4) Systems Biology: definition and experimental connotation of Systems Biology 
5) Why Systems Biology? The reductionist approach versus the holistic approach 
6) The concept of model: predict the future in biology? 
7) Static models: the network abstraction and the topological properties of biological networks 
8) Dynamic models and biological kinetics

Methods in Systems Biology: 

9)   High-performance technologies (high throughput methods) 
10) Bioinformatics 
11) Biological database 
12) Software for Systems biology 
13) Contexts of Systems Biology: transcriptomics, proteomics, metabolomics, and other “omics”.

Systems Biology in practice - applications of Systems Biology to biomedical contexts 

14) Networks and diseases 
15) The immune system 
16) Inflammatory mechanisms 
17) Cancer 
18) Neurodegenerative diseases 
19) Autoimmune diseases 
20) Systems pharmacology and drug discovery

Topics covered in the "Systems Biology” class 



L1: Mastering Cytoscape  

L2: Biological data-bases 1 

L3: Biological data-bases 2 

L4: Network analysis in adoptive immunity: case study 

L5: Metabolic networks in inflammatory diseases: case study 

L6: Network analysis in neurodegenerative diseases: case study

Laboratory (12 hours) for the "Systems Biology” class 



L1: Mastering Cytoscape: 
The file formats, creating networks, extracting sub-networks, generating node 
information layers, performing topological analysis, applying modular 
decomposition and intersections tools, exporting data and images, etc. 

L2: Biological data-bases 1: 
https://www.genenames.org 
https://omictools.com 
https://www.targetvalidation.org 
https://www.ebi.ac.uk 
http://www.uniprot.org 
https://www.ncbi.nlm.nih.gov 
https://www.ncbi.nlm.nih.gov/gene 
https://blast.ncbi.nlm.nih.gov/Blast.cgi 

L3: Biological data-bases 2 
http://www.geneontology.org 
http://amigo.geneontology.org/amigo 
https://www.phosphosite.org/homeAction.action 
https://string-db.org 
https://thebiogrid.org 
https://reactome.org 
http://www.genome.jp/kegg/ 
http://disease-connect.org 

Laboratory for the "Systems Biology” class 

https://www.genenames.org
https://omictools.com
https://www.targetvalidation.org
https://www.ebi.ac.uk
http://www.uniprot.org
https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov/gene
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.geneontology.org
http://amigo.geneontology.org/amigo
https://www.phosphosite.org/homeAction.action
https://string-db.org
https://thebiogrid.org
https://reactome.org
http://www.genome.jp/kegg/
http://disease-connect.org


(1) 
Complexity: definitions

Collection of 
“sparse” (scattered) gears

Gears



Collection of “interacting” gears according to 
a specific design (architecture)!

Clock



Set of objects System

Function 
(time measuring)

NO function



ComplexSimple Complicated

System (mathematical, physical, biological) = set of interacting 
objects - physically and/or functionally

A

B

C

D



“Simple” System

It is a set of interacting elements in such a way that the whole 
of the global behavior is the simple sum of the sub-behaviors 
of the individual components of the set.

Its behavior is linear: a system is linear if responds in a way 
directly proportional to the stress received. For it applies the 
principle of effect superposition: 

if, upon S1 stress, the system gives the answer R1, and upon 
S2 stress gives the answer R2, then upon combined stress (S1 
+ S2) the answer is (R1 + R2) (deterministic predictability). 

It requires very little information to be exhaustively described



A system can be "simple" 
BUT 

at the same time "complicated"

A system is complicated if it is difficult 
to understand its structure and / or 
function because it contains a large 
number of elements, which must be 

defined one by one



A diamond: "simple" but "complicated"

Chemical formula: C 
Crystal Group: monometric 
Crystal system: Cubic 

It is quite “laborious” to calculate 
the fracturing plane 

Reticulum of carbon atoms in a tetrahedral structure  
(lattice)



“Complex” system
It is a set of interacting elements in such a way that its global behavior is NOT derived from 
the sum of the behaviors of the individual elements of the system 

The behavior is non-linear: it is non-linear a system that responds disproportionately to 
solicitations received (triggering of status changes).  
 (S1,R1) (S2,R2) => (S1+S2) (R1+R2) = linear 
 (S1,R1) (S2,R2) => (S1+S2) (R1+R2+R3) = not linear 

"Emergent" behavior: The emergent behavior is a consequence of non-linearity. In a linear 
system new properties do not appear that are not already present in the individual elements. 
In a non-linear system, the interacting elements are functionally dependent from each other: 
their combination brings out properties not corresponding to the simple sum of the properties 
of the individual parts; new properties do appear, called emergent properties, absent in the 
individual, BUT that depend entirely on the "system design”. 

"Sensitivity to initial conditions" = butterfly effect 

Possibility of chaos (unpredictable evolution of the system, concept of space phase) 

Dissipation (apparent violation of the second law of thermodynamics) 

Self-organization (biological systems)



Single  
steel sheet

Drop in water

Sinking !

Emergent properties



A set of steel sheets



Drop in water

Sinking !



300000 steel sheets + 6000000 steel rivets 
= 

organization

Steel ship
NO Sinking !



≠

Flotation 
NO

Flotation 
YES

Why the steel sheets do sink whereas the 
ship does floats?



The sheets are mounted in such a way that 
constitute a "system" that surrounds a space 

with an empty volume (the boat) that move an 
amount of water with a global mass superior 

to the whole of the sheets themselves. 

 Moved water generates a “pushing force” 
from the bottom upwards equal to the weight 
(mass = force) of the displaced liquid volume" 

which exerts a floating force  
(Archimedes' principle)



The ship is a system 

Floating is an exclusive property of the 
structure of the system = emergent property of 
the system (isolated metal sheets do sink) 

Archimede’s principle establishes the 
mathematical rule that governs the emergent 
property, and allows its quantification

FA = ρflu g V
ρflu water = 1 
ρflu Hg = 13.6



Diamond



Graphite



Diamond
Two polymorphic structures of carbon

Graphite



3D

3D

Crystal abitus - DIAMOND

Crystal abitus - GRAPHYTE



Graphite is composed of layers of carbon atoms arranged in hexagonal 
structures.
Diamond is composed of layers of carbon atoms arranged in the cubic 
structures. 

The different crystal structures of diamond and graphite are the unique 
determinants of the huge differences between the properties of these two 
materials. 

The two different polymorphic structures have the same chemical behaviour 
(ignition), BUT totally different physical properties (cleavage, hardness, 
transparency, melting point). These physical properties only derives (emerge) from 
atoms organisation. 
They are EMERGENT PROPERTIES of the system!



The diamond does show emergent properties

hardness transparency

Crystal system:  

Cubic

melting point hardness



Oscillators

+ -

+

-

ON

OFF

Frequency, amplitude and wavelength are emergent properties

ON

Battery Alternator

Lamp



Brain = 1011 neurons; 1014 connexions !

Memory, 
Consciousness 

(complexity in biology, see 
below!)



(1) 
Complexity in the living world: origin and 

nature of complexity in biology

Diameter  ~ 1,4×106  km

Length ~ 10 cm

14x109 <



“A toad is much more complex than a 
star”

Martin Rees 
Astrophysicist

Complexity      Dimension~/



quarks (6) protons-neutrons atomic nuclei atoms

basic  
organic molecules DNA proteins

Origin of complexity



Molecular circuits
Cells

Organs

Living being



10n carbon atoms Diamond

Living being

Simple organization

Complex organization

10n carbon atoms

?

Carbon chemistry = LIFE!   BUT …. not just carbon!



Biology as a supreme manifestation of 
complex organisation

3 sub-atomic particles  
(protons, neutrons, electrons)

4 elements (atoms) fundamental to biology 
(C, H, O, N) 

(P, Fe, Ca, S, Se, Cu, Zn = oligo elements)

4 molecules fundamental to biology 
(lipids, carbohydrates, nucleic acids, proteins)

Lipids Carbohydrates Nucleic acids Proteins
5 main types 

Cholesterol 
Triglycerides 
Fatty acids 

Phospholipids 
Glycolipids

3 main types 

Monosaccharides 
Disaccharides 

Polysaccharides

2 main types 

DNA 
RNA

1 main type 
but more than 
105 different 
sequences



DNA  
(homo sapiens)

Proteine

~100000 proteins

A-C-G-T 
(3x109 bases)

64 codons 
(109 potential)

~23000 coding genes

20 (23?) Amino acids



6 
quarks

2  
adrons 
(protons,  
neutrons)

1  
lepton 
(elettrone)

4  
atoms 

(C, H, O, N)

4  
bases 

(A, C, G, T)

Combinations

Combinations Combinations

20  
amino acids

~ 23000 
genes

Combinations
100000
proteins

Combinatorial 
rules

Combinations Combinations

Combinations

Is this enough ? ?



105 proteins sequences

Homo sapiens sapiens Homo Sapiens sapiens

NO 
Combinatorial interaction

YES 
Further level of  

combinatorial interaction

NO YES



Molecular circuits
Cells

Organs

In biology:
Everything is interaction!

Everything is combination!
Everything is a process!

(may be not only in biology)



The “magic word” in biology: 
combinatoriality’

2 types of combinatoriality’

Structural Circuital
Cells 

Tissues 
Organs

Functional circuits: 
- cellular 

- molecular

Apparatus,
Systems



Structural combinatoriality



Sub-cellular 
organuli



Collage fibers (connective tissue)



Exocrine glandular acini



Pancreas



Elements (cells, molecules) with different function reciprocally interact 
in specific and changeable way over time and / or space (dynamics) 

to provide appropriate feed-back to environmental changes 
(Processing of matter-energy and/or information)

Circuital combinatoriality 
(dynamics)

Cellular circuits: 

- neurons 
- leukocytes

Molecular circuits: 

- hormones 
- metabolism 

- signal transduction

Basically, biology is a “net of nets” (circuits) generating 
“emergent properties”. 

Modelling, discovering and understanding them is the  
main goal of Systems Biology.



(2) 
Emergent properties in biological systems: 

cellular and molecular circuits
Papez circuit: bi-stability and the  

emergence of memory

Reverberating cellular circuit



The limbic system is a set of brain structures located on both sides of the thalamus, 
immediately beneath the cerebrum.

The limbic system supports a variety of functions including emotion, behavior, 
motivation, long-term memory, and olfaction.

It is not a separate system but is a collection of interconnected structures, 
organised in a peculiar architecture.

The limbic system

https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Thalamus
https://en.wikipedia.org/wiki/Cerebrum
https://en.wikipedia.org/wiki/Emotion
https://en.wikipedia.org/wiki/Behavior
https://en.wikipedia.org/wiki/Motivation
https://en.wikipedia.org/wiki/Long-term_memory
https://en.wikipedia.org/wiki/Olfaction


 Cortical areas: 
 ◦ Limbic lobe 
 ◦ Orbitofrontal cortex, a region in the frontal lobe involved in the process of decision-

making. 
 ◦ Piriform cortex, part of the olfactory system. 
 ◦ Entorhinal cortex, related with memory and associative components. 
 ◦ Hippocampus and associated structures, which play a central role in the consolidation 

of new memories. 
 ◦ Fornix, a white matter structure connecting the hippocampus with other brain 

structures, particularly the mammillary bodies and septal nuclei 

 Subcortical areas: 
 ◦ Septal nuclei, a set of structures that lie in front of the lamina terminalis, considered a 

pleasure zone. 
 ◦ Amygdala, located deep within the temporal lobes and related with a number of 

emotional processes. 
 ◦ Nucleus accumbens: involved in reward, pleasure, and addiction. 

 Diencephalic structures: 
 ◦ Hypothalamus: a center for the limbic system, connected with the frontal lobes, septal 

nuclei and the brain stem reticular formation via the medial forebrain bundle, with the 
hippocampus via the fornix, and with the thalamus via the mammillothalamic fasciculus. 
It regulates a great number of autonomic processes. 

 ◦ Mammillary bodies, part of the hypothalamus that receives signals from the 
hippocampus via the fornix and projects them to the thalamus. 

 ◦ Anterior nuclei of thalamus receive input from the mammillary bodies. Involved in 
memory processing.

https://en.wikipedia.org/wiki/Limbic_lobe
https://en.wikipedia.org/wiki/Orbitofrontal_cortex
https://en.wikipedia.org/wiki/Piriform_cortex
https://en.wikipedia.org/wiki/Olfactory_system
https://en.wikipedia.org/wiki/Entorhinal_cortex
https://en.wikipedia.org/wiki/Hippocampus
https://en.wikipedia.org/wiki/Fornix_of_the_brain
https://en.wikipedia.org/wiki/White_matter
https://en.wikipedia.org/wiki/Mammillary_bodies
https://en.wikipedia.org/wiki/Septal_nuclei
https://en.wikipedia.org/wiki/Septal_nuclei
https://en.wikipedia.org/wiki/Lamina_terminalis
https://en.wikipedia.org/wiki/Amygdala
https://en.wikipedia.org/wiki/Temporal_lobes
https://en.wikipedia.org/wiki/Nucleus_accumbens
https://en.wikipedia.org/wiki/Diencephalon
https://en.wikipedia.org/wiki/Hypothalamus
https://en.wikipedia.org/wiki/Reticular_formation
https://en.wikipedia.org/wiki/Medial_forebrain_bundle
https://en.wikipedia.org/wiki/Mammillothalamic_fasciculus
https://en.wikipedia.org/wiki/Mammillary_bodies
https://en.wikipedia.org/wiki/Thalamus
https://en.wikipedia.org/wiki/Anterior_nuclei_of_thalamus




The Papez circuit (or medial limbic circuit) is a neural circuit for the control 
of emotional expression. It a part of limbic system. 

It has a particularly relevant role in memory functions.

Central nervous system memorisation:
The Papez circuit







The Papez circuit is a reverberating circuit devoted to signal 
memorisation and information storage.

Memory is a property of CNS architecture

A B

C

Activation Activation

Activation
External input Information recirculates

even if the external 
input is OFF

A B C D

D

X



A B

C

X X
X

Stimulus

A non-reverberating circuits does not 
trigger memorisation



A B

C

X

A reverberating circuit generates bi-stability and 
triggers the emergence of memorisation

Memory is an emergent property!

Stimulus

The system records the 
stimulus



Feedback mechanisms and the oscillators
The pituitary and the hormonal oscillators



The pituitary and the hormonal oscillators





TRH

TSH T3/T4

Negative 
feedback

Thyroid circuit

Thyroid



A

B

C



Hypotalamus

Pituitary

Thyroid

TSH

T3/T4

TRH

0
20
40

1 2 3 4 5 6

0
20
40

1 2 3 4 5 6

The synthesis (and the blood levels) of hormones fluctuates: 
hormonal oscillation is an emergent property



The cell cycle: a molecular oscillator

Period  ~ 12 hours





cell cycle: cyclins oscillate 



The oscillation of intracellular calcium

Amplitude + frequency



Amplitude + frequency



The frequencies of calcium oscillations are optimized
for efficient calcium-mediated activation of Ras
and the ERK!MAPK cascade
Sabine Kupzig*, Simon A. Walker† , and Peter J. Cullen*‡

*Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD,
United Kingdom; and † Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, United Kingdom

Edited by Solomon H. Snyder, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved March 10, 2005 (received for review
December 22, 2004)

Ras proteins are binary switches that, by cycling through inactive
GDP- and active GTP-bound conformations, regulate multiple cel-
lular signaling pathways, including those that control growth and
differentiation. For some time, it has been known that receptor-
mediated increases in the concentration of intracellular free cal-
cium ([Ca2!]i) can modulate Ras activation. Increases in [Ca2!]i

often occur as repetitive Ca2! spikes or oscillations. Induced by
electrical or receptor stimuli, these repetitive Ca2! oscillations
increase in frequency with the amplitude of receptor stimuli, a
phenomenon critical for the induction of selective cellular func-
tions. Here, we show that Ca2! oscillations are optimized for
Ca2!-mediated activation of Ras and signaling through the extra-
cellular signal-regulated kinase (ERK)!mitogen-activated protein
kinase (MAPK) cascade. We present additional evidence that Ca2!

oscillations reduce the effective Ca2! threshold for the activation
of Ras and that the oscillatory frequency is optimized for activation
of Ras and the ERK!MAPK pathway. Our results describe a hitherto
unrecognized link between complex Ca2! signals and the modu-
lation of the Ras!ERK!MAPK signaling cascade.

RASAL " CAPRI " GRF " GDP

For a wide variety of cell surface receptors, activation leads to
an increase in the concentration of intracellular free calcium

([Ca2!]i) (1–3). Once induced, the elevation in [Ca2!]i is respon-
sible for controlling a diverse array of cellular processes, includ-
ing secretion, contraction, learning, and proliferation (3). Un-
derstanding how receptor-mediated increases in [Ca2!]i are
capable of modulating so many physiological processes is one of
the major challenges in the study of Ca2! signaling. It appears
that such control is achieved through a complex relationship
between the amplitude and spatiotemporal patterning of the
Ca2! signal and its resultant ability to couple to an extensive
molecular repertoire of Ca2!-sensing proteins (3).

Receptor-mediated increases in [Ca2!]i are often observed as
repetitive Ca2! spikes or oscillations that increase their fre-
quency with the amplitude of the receptor stimuli (refs. 4 and 5;
reviewed in ref. 3). These frequency-encoded signals appear to
be critical for the induction of selective cellular functions (3). For
example, the frequency of receptor-mediated Ca2! oscillations
determines the efficiency of gene expression driven by the
transcription factors NF-AT, OAP, and NF-!B (6–8) and mi-
tochondrial ATP production (9). To decode the information
contained within Ca2! oscillations, cells have evolved a number
of frequency-modulated decoders. Such proteins include cal-
modulin (10), protein kinase C (11–15), calpain (16), calmodu-
lin-dependent protein kinase II (17, 18), and the Ras GTPase-
activating protein RASAL (19).

Ras proteins are binary molecular switches that regulate
multiple signaling pathways, including those controlling growth
and differentiation, through an ability to cycle between inactive
GDP- and active GTP-bound conformations (20–23). The mag-
nitude and duration of Ras signaling is controlled by two classes

of proteins: Guanine nucleotide exchange factors modulate Ras
activation by enhancing the exchange of GDP for GTP, and
GTPase-activating proteins regulate inactivation by increasing
the intrinsic Ras GTPase activity (20–23). Although it has been
known for some time that increases in [Ca2!]i can modulate Ras
activation (for example, Ca2! influx through voltage-operated
ion channels or release from internal stores can activate Ras in
neuronal cells) (24), only recently have molecular entities been
described that allow for this coupling (reviewed in ref. 25).

Two families of Ras guanine nucleotide exchange factors
(GEFs), RasGRFs (26–29) and RasGRPs (30–36), the latter
also being known as CalDAG-GEFs, are modulated by increases
in [Ca2!]i. For RasGRFs, this modulation occurs indirectly
through association with Ca2!!calmodulin, whereas for Ras-
GRPs, a more direct control is achieved through association of
Ca2! with atypical EF hands (25). In addition to stimulating Ras
activation, increases in [Ca2!]i also mediate Ras inactivation
through the Ca2!-triggered RasGTPase-activating proteins
(RasGAPs) RASAL and CAPRI (19, 37). These proteins are
cytosolic, inactive RasGAPs that, upon a receptor-mediated
elevation in [Ca2!]i, undergo a rapid, C2 domain-dependent
association with the plasma membrane, an association that leads
to an increase in their RasGAP activity (19, 37). Unlike CAPRI,
which undergoes a transient association with the plasma mem-
brane and does not sense receptor-mediated Ca2! oscillations,
the plasma membrane association of RASAL occurs in an
oscillatory manner (19). This oscillatory association occurs in
synchrony with underlying receptor-mediated Ca2! oscillations
and is frequency-modulated such that, upon increasing the
amplitude of receptor stimuli, the frequency of RASAL mem-
brane association is enhanced (19). CAPRI and RASAL there-
fore constitute molecular entities that can sense the amplitude
and frequency, respectively, of complex Ca2! signals, decoding
these distinct temporal signals through a modulation of plasma-
membrane-associated Ras.

The characterization of such distinct Ca2! sensors, tuned to
detect different temporal Ca2! signals, has raised the issue of
whether the temporal dynamics of receptor-mediated Ca2!

oscillations are optimized for efficient Ca2!-mediated activation
of Ras and downstream Ras-dependent signaling (25, 38). Here,
we have addressed this issue, presenting data showing that the
temporal dynamics of Ca2! signals are indeed optimized for
activation of Ras and the downstream extracellular signal-
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HRas-MAPK pathway

Increase of frequency



The H-Ras-MAPK pathway is not regulated by the 
amount (concentration) of absolute Cai released 

(amplitude) 
BUT 

by the frequency of the oscillations (time flow) 

An emergent property that directly regulates  
a biological function 

It is not the function of a single molecule that 
regulates.  

Instead, the ensemble of interacting 
molecules, appropriately combined, generates 

circuits generating emergent functions.



A dissipative structure is characterised by the 
“spontaneous”, self-organised, appearance of 
symmetry breaking (anisotropy) and the formation 
of complex structures where interacting particles 
exhibit long range correlations. 

Examples in everyday life include convection, 
turbulent flow, cyclones, hurricanes and … living 
organisms.

Complex systems and dissipative behaviour

https://en.wikipedia.org/wiki/Dissipation
https://en.wikipedia.org/wiki/Anisotropy
https://en.wikipedia.org/wiki/Convection
https://en.wikipedia.org/wiki/Turbulence
https://en.wikipedia.org/wiki/Cyclone
https://en.wikipedia.org/wiki/Tropical_cyclone
https://en.wikipedia.org/wiki/Life
https://en.wikipedia.org/wiki/Life




Two fundamental properties of complex biological systems

(1) 
Biological systems are 
dissipative structures 

(Ilya Prigogine,  
Nobel Laureate for chemistry 1977)

“Apparent” violation of 2o thermodynamics law

Thermodynamically open system working far from 
thermodynamic equilibrium and constantly exchanging with 

the environment: 
energy, matter, information and / or entropy



(2) 
Biological systems 

show self-organisation

Biological systems are characterised by the spontaneous 
generation of anisotropy, that is of ordered structures with 

“increasing” complexity. 

Biological systems, when traversed by increasing flows of 
energy and matter, instead of accumulating entropy, do evolve 

and, passing through phases of instability, do increase the 
complexity of their structure (that is increase the order) and 

reduce their entropy.  
Losing entropy to generate complexity (patterns). 

Complexity = Organisation = Order



Emergence of patterns (order, structures)



JAN WALLECZEK 

Self-Organized Biological Dynamics and Nonlinear Control:  
Toward Understanding Complexity, Chaos and Emergent Function in Living Systems



How do we study biological 
complex systems?



(3) 
Theses-based science: 
the deductive method 

(Aristotele)

The deductive method (literally "led by") is the rational process 
that derives a particular conclusion from more general 
assumption (Universal), within which that conclusion appears to 
be implied. 

The deductive method starts first from (undemonstrated) 
postulates and general principles and, through a series of 
rigorous logical concatenation, proceed towards more particular 
determinations related to reality, observable and measurable.

1_  A = B 
2_  B = C 
3_  A = C

eg. Aristotelian syllogism
Mathematics 
Theoretical physics (?)



The deductive method always starts from a postulate or from 
an axiom or a group of axioms, that is, from an absolute truth 
that does not need to be verified, from which it deduces, 
through a reasoning, the particular facts. 

Therefore the validity of what is deducted collapses if it is 
proved that the starting affirmation is false or arbitrary. 

In this way, precisely collapses the original assumption on 
which the entire argument (logical process) itself was founded.



(3) 
Science based on experimental data: 

  the inductive method 
(Galileo Galilei)

The inductive method (literally “conduct in") (reverse 
process of deduction) implies that the thought is funded on 
experience. 

The sensitive data of experience (observation of Nature) are 
“induced”, de facto introduced, into the intellect, which then 
draws universal and abstract laws. 

Also called “a posteriori” as the conceptual analysis of the 
reality is only possible upon the experience.

All experimental science



Inductive MethodDeductive Method

Universal

Particular Universal

Particular



1 
OBSERVATION

2 
SENSITIVE 

DATA

How does Science really work? 
(Popper, Khun)

3 
THEORY

4 
EXPERIMENT

induction deduction

Reductionism Holism

Never demonstrated
only

“corroborated” by data



(4) 
Systems Biology: definition and experimental 

connotation of Systems Biology

Definition: Systems biology is a discipline of life science that 
studies living organisms as complex systems that evolve 
over time, ie from the point of view of dynamic interaction of 
the parts of which they are composed. The final goal is to 
identify the emergent properties driving life. 

A systems biology study is performed by integrating the 
results of different high-performance experiments (high 
throughput molecular state data) with analysis methods 
derived from dynamical systems theory, mathematics and 
bioinformatics.



Systems biology starts from the detailed knowledge of 
genomic, proteomic and / or metabolic molecular states 
of a living organism, by means of advanced multiplexed, 
high-performance, genomics, proteomics and 
metabolomics techniques, to determine dynamic 
molecular changes derived from a perturbation of the 
system.

The obtained experimental data are then processed 
using approaches of systems theory, bioinformatics and 
mathematical-statistical, with the goal of creating a 
predictive model of the functioning of biological systems.



Differently of molecular biology, which focuses on individual 
biological macromolecules, such as nucleic acids and 
proteins, and of traditional physiology, which studies 
biological systems not necessarily from the molecular point 
of view, systems biology studies the nature of the dynamic 
interactions between the various molecules that form, over 
time, a functioning biological system. 

The ultimate goal is to construct a mathematical model that 
allows the simulation of the biological phenomenon 
computer in order to identify the "emergent properties" of 
the system.



Systems biology as a result of the procedures 

and principles applied is often identified as a 

"discovery science", as opposed to the 

traditional "hypotesis-driven science"



(5) 
Why Systems Biology?  

Reductionism versus holism

Biology studies that part of the 
physical world characterised by 

being alive!



Bacteria duplication

24 ore = 5x1021

20 min



Eukaryotic cell cycle
12-14 h



Leukocyte chemotaxis 



Bacteria 
duplication



Eukaryotic cell cycle



Leukocyte chemotaxis 



Bacteria 
duplication

Eukaryotic 
cell cycle

Leukocyte 
chemotaxis 

~ 60 molecole ~ 110 molecole ~ 50 molecole

Es. 

FtsQ

Es. 

CDC25A

Es. 

Rac1

Are they alive?



An open thermodynamic system, 
capable of supporting themselves in an 
state of energetic stationary imbalance, 
and able to direct a series of chemical 

reactions towards the synthesis of itself

Definition of life
(1)



Definition of life
(2)

An autonomous physical entity that:
 

1) replicates itself
2) mutates 
3) replicates the mutations



Is Rac1 alive?



Is Rac1 associated to PLC-beta alive?



Nucleus - 
DNA 

Information

Cytoplasm - mRNA 
proteins

Mitocondria - ATP 
energy

Cytoskeleton - 
motility

Surely, a cell is alive!



The cell is “alive” because it’s a 
highly complex and fully 

integrated, physical object which 
replicates, mutates and replicates 

the mutations

The “magic word” in biology: 
combinatoriality

Life is an emergent property of a physical system 
characterised by extreme combinatoriality

We need a scientific approach allowing 
dealing both with the molecular details as 
well as with the global dimension of living 

beings. 

The new approach must allow modelling 
biological systems to generate predictive 

models of cell and organ functions



Functions

Quantification

Funzioni Funzioni

Model

How science deals with the study of life

Holism

No molecular dimension!



1 molecule

1 cause-effect relationship

1 function

Intuitive model

Reductionism

No global 
dimension!



 Global"omics" asset 
(high throughput methods)

Global cause-effect relationship

System properties 
(“emergent properties”)

Predictive mathematical modeling

Computational analysis

Functions

Holistic reductionism = Systems biology



System 
analysis

Molecular 
level 

information

Quantitative 
analysis

Mathematical 
model 

Emergent 
properties

Holism 
(physiology) YES NO YES YES YES

Reductionism 
(molecular 

biology)
NO YES SI/NO NO NO

Systems 
biology YES YES YES YES YES

“Cum granu salis”



Overall, Systems Biology provides a conceptual 

framework for common issues such as, network 
biology, network medicine, multidimensional 
integrative medicine and in silico drug testing. 

In modern medicine, such a conceptual framework 

is nowadays synthesised in the advanced vision of 
personalized medicine or precision medicine. 

The ultimate goal and 'the creation of a 
“computable” model.



(6) 
The model: predicting the future in biology?

Systems biology aims at creating molecular functional 
models of the living phenomena. 

But what is a model?

"A model is a selective abstraction of reality” 

(Albert Einstein)

http://it.wikipedia.org/wiki/Albert_Einstein


The term abstraction indicates the mental process by which 

you replace a set of distinct objects with a more general 

concept, describing the objects based on their common 

properties. For example, starting from the set of all living 

beings, you can derive the generic concept of animal based 

on the characteristics shared by all animals with respect to 

the plants.

Abstraction: definition



Abstraction: object vs. numbers

Few apples

3 apples 15 apples

3 apple + 15 apples = 18 apples 
3 + 15 = 18

Many applesQualitative determination

Quantitative determination

Numbers are quantitative abstractions of reality



In science, a model is a representation of an object or a 

phenomenon, which corresponds to the modelled entity in way that 

it reproduces the characteristics or basic behaviours of the entity 

itself. 

If correct, modelling allows predicting the future behaviour of the 

studied object. 

If fully “rigorous”, the model is not 'minimally influenced by the 

expectations or by the subjective interpretation of the observer; 

thus, the observation and scientific data, underpinning the 

formulation of theoretical models, are totally “invariant” with respect 

to the observer.

Modelling in science



In physics, a model is defined as a conceptual representation 

(often a simplification) of the real world or a part thereof, 

capable of explaining and/or predicting its functioning. 

In physics, the models based on conceptual assumptions are 

translated into mathematical formulas.



In mathematics, a model is constructed using the 

language and tools of mathematics.  

Its purpose is to represent as accurately as 

possible a certain object, a real phenomenon or a 

physical process from quantitative point of view.



The ultimate goal of mathematical modelling is to be 

able to study mechanisms and aspects of physical 

phenomena where the object modelled is not directly 

accessible, so as to predict its future behaviour.



Solar system Gravitation laws
Predicting 

planet motion



In systems biology, the modelling phase, which follows the 
experimental phase, includes all theoretical and applied 
mathematical treatments and computational techniques used to 
abstract, represent and simulate the behaviour of complex 
cellular and/or molecular systems, in order to construct 
mathematical models capable of identifying the emergent 
properties of complex biological systems and to predict their 
future behaviour.

Modelling in systems biology

"A model is a selective abstraction of reality”

Static models Dynamic models



Static models: the graph-network abstraction 
and the topological properties of biological 

networks 

Examples of complex biological systems 
possibly abstracted as physical networks: 

• Central nervous system 
• Immune system 
• Metabolism 
• Endocrine system 
• Signaling mechanisms 
• Ecosystems 
• WWW



Central Nervous System =
set of physically connected neurons

Endocrine System =
set of functionally related cells and hormones

Immune system =
collection of cells and molecules physically and

functionally connected

Signal transduction system =
set of intracellular molecules physically and/or

functionally linked devoted to information processing

Metabolism =
set of intracellular molecules physically and/or

functionally linked devoted to mass/energy processing

Ecosystems =
sets of predator-prey couples leading to speciation

on the basis of Darwinian selection

World Wide Web =
collection of connected computers processing information



Display global cause-effect relationships
(possible triggering of butterfly effects)

Analysis needs creation of topological 
mathematical model

Generation of architectural system-level properties

What do they have in common?



Abstraction = 
mental process by which you replace a set 

of distinct objects with a more general 
concept, describing the objects based on 

their common properties

To build a static mathematical model 
we need the right abstraction!

The abstraction must allow to 
recapitulate the essence of the 
phenomenon: it must “train the 

complexity”.



Starting from “real” physical networks



Instinctively ...
our mind develops a conceptual 

image
which allows to represent 

interacting objects as
a network of relationships



How to abstract a conceptual 
image

of a network of relationships?



Example: 
how to abstract the central nervous system?

Real objects are represented 
as 2D geometric shapes



Symbolic representation of a set of objects on a 2D plane

Is it satisfactory?



We must represent not only the objects
BUT

also, and especially, their relationships!

Euler (1707 - 1783) Konigsberg bridges

Konigsberg 
area

The abstraction:  
the graph

Konigsberg 
bridge



Fundamental BINARY elements in graphs

Euler’s abstraction

"Abstract" representation
of any type of complex system!

A B

Nodo o 
Vertice

Arco non-diretto

A B
Arco diretto

Node

un-directed Edge

directed Edge



OK!



“Undirected” graph

B

A



“Directed” graph

B

A



Euler’s abstraction: the graph theory

Why to abstract a complex system as a graph is 
so useful?

B

A

➡atom, 
➡molecule, 
➡cell, 
➡ living being, 
➡ecosystem, 
➡bank, 
➡computer, 
➡etc.



Concept universalization  
Complexity simplification (training): a 
network of physical objects becomes a 
graph on 2D plane (planar geometry) 

Quantification of network structures: 
static models building 
quantification of architectural properties 
functional prediction



Network of cells and cytokines in the immune system



B-cell T-cell

Mastcell

Basofilo

Macrofago

Neutrofilo

Eosinofilo



A

B

And now? 
What to do?



Graph theory: the "TOPOLOGICAL" analysis of 
networks

Topology or study of the places (from greek τοπος = place, and 

λογος = study) is one of the most important branches of modern 

mathematics and physics. 

It concerns the study of the properties of figures and forms that 

do not change when a deformation is applied without any "tear", 

"overlapping" or "gluing".





Reductionism, which has dominated biological research
for over a century, has provided a wealth of knowledge
about individual cellular components and their func-
tions. Despite its enormous success, it is increasingly
clear that a discrete biological function can only rarely
be attributed to an individual molecule. Instead, most
biological characteristics arise from complex interac-
tions between the cell’s numerous constituents, such as
proteins, DNA, RNA and small molecules1–8. Therefore,
a key challenge for biology in the twenty-first century is to
understand the structure and the dynamics of the com-
plex intercellular web of interactions that contribute to
the structure and function of a living cell.

The development of high-throughput data-collection
techniques, as epitomized by the widespread use of
microarrays, allows for the simultaneous interrogation 
of the status of a cell’s components at any given time.
In turn, new technology platforms, such as PROTEIN CHIPS

or semi-automated YEAST TWO-HYBRID SCREENS, help to deter-
mine how and when these molecules interact with each
other. Various types of interaction webs, or networks,
(including protein–protein interaction, metabolic, sig-
nalling and transcription-regulatory networks) emerge
from the sum of these interactions. None of these net-
works are independent, instead they form a ‘network of
networks’ that is responsible for the behaviour of the
cell. A major challenge of contemporary biology is to
embark on an integrated theoretical and experimental 

programme to map out, understand and model in quan-
tifiable terms the topological and dynamic properties of the
various networks that control the behaviour of the cell.

Help along the way is provided by the rapidly develop-
ing theory of complex networks that, in the past few
years, has made advances towards uncovering the orga-
nizing principles that govern the formation and evolution
of various complex technological and social networks9–12.
This research is already making an impact on cell biology.
It has led to the realization that the architectural features
of molecular interaction networks within a cell are shared
to a large degree by other complex systems, such as the
Internet, computer chips and society. This unexpected
universality indicates that similar laws may govern most
complex networks in nature, which allows the expertise
from large and well-mapped non-biological systems to be
used to characterize the intricate interwoven relationships
that govern cellular functions.

In this review, we show that the quantifiable tools of
network theory offer unforeseen possibilities to under-
stand the cell’s internal organization and evolution,
fundamentally altering our view of cell biology. The
emerging results are forcing the realization that, not-
withstanding the importance of individual molecules,
cellular function is a contextual attribute of strict 
and quantifiable patterns of interactions between the
myriad of cellular constituents. Although uncovering
the generic organizing principles of cellular networks

NETWORK BIOLOGY:
UNDERSTANDING THE CELL’S
FUNCTIONAL ORGANIZATION
Albert-László Barabási* & Zoltán N. Oltvai‡

A key aim of postgenomic biomedical research is to systematically catalogue all molecules and
their interactions within a living cell. There is a clear need to understand how these molecules and
the interactions between them determine the function of this enormously complex machinery, both
in isolation and when surrounded by other cells. Rapid advances in network biology indicate that
cellular networks are governed by universal laws and offer a new conceptual framework that could
potentially revolutionize our view of biology and disease pathologies in the twenty-first century.

PROTEIN CHIPS

Similar to cDNA microarrays,
this evolving technology
involves arraying a genomic set
of proteins on a solid surface
without denaturing them. The
proteins are arrayed at a high
enough density for the 
detection of activity, binding 
to lipids and so on.
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1Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
2Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
3Center for Complex Network Research (CCNR) and Departments of Physics, Biology and Computer Science, Northeastern University,
Boston, MA 02115, USA
4Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
*Correspondence: marc_vidal@dfci.harvard.edu (M.V.), alb@neu.edu (A.-L.B.)
DOI 10.1016/j.cell.2011.02.016

Complex biological systems and cellular networks may underlie most genotype to phenotype
relationships. Here, we review basic concepts in network biology, discussing different types of
interactome networks and the insights that can come from analyzing them. We elaborate on why
interactome networks are important to consider in biology, how they can bemapped and integrated
with each other, what global properties are starting to emerge from interactome network models,
and how these properties may relate to human disease.

Introduction
Since the advent of molecular biology, considerable progress
has been made in the quest to understand the mechanisms
that underlie human disease, particularly for genetically inherited
disorders. Genotype-phenotype relationships, as summarized in
the Online Mendelian Inheritance in Man (OMIM) database (Am-
berger et al., 2009), include mutations in more than 3000 human
genes known to be associated with one or more of over 2000
human disorders. This is a truly astounding number of geno-
type-phenotype relationships considering that a mere three
decades have passed since the initial description of Restriction
Fragment Length Polymorphisms (RFLPs) as molecular markers
to map genetic loci of interest (Botstein et al., 1980), only
two decades since the announcement of the first positional
cloning experiments of disease-associated genes using RFLPs
(Amberger et al., 2009), and just one decade since the release
of the first reference sequences of the human genome (Lander
et al., 2001; Venter et al., 2001). For complex traits, the informa-
tion gathered by recent genome-wide association studies
suggests high-confidence genotype-phenotype associations
between close to 1000 genomic loci and one or more of over
one hundred diseases, including diabetes, obesity, Crohn’s
disease, and hypertension (Altshuler et al., 2008). The discovery
of genomic variations involved in cancer, inherited in the germ-
line or acquired somatically, is equally striking, with hundreds
of human genes found linked to cancer (Stratton et al., 2009).
In light of new powerful technological developments such as
next-generation sequencing, it is easily imaginable that a catalog
of nearly all human genomic variations, whether deleterious,
advantageous, or neutral, will be available within our lifetime.

Despite the natural excitement emerging from such a huge
body of information, daunting challenges remain. Practically,
the genomic revolution has, thus far, seldom translated directly
into the development of new therapeutic strategies, and the
mechanisms underlying genotype-phenotype relationships
remain only partially explained. Assuming that, with time, most
human genotypic variations will be described together with

phenotypic associations, there would still be major problems
to fully understand andmodel human genetic variations and their
impact on diseases.
To understand why, consider the ‘‘one-gene/one-enzyme/

one-function’’ concept originally framed by Beadle and Tatum
(Beadle and Tatum, 1941), which holds that simple, linear
connections are expected between the genotype of an organism
and its phenotype. But the reality is that most genotype-pheno-
type relationships arise from a much higher underlying com-
plexity. Combinations of identical genotypes and nearly identical
environments do not always give rise to identical phenotypes.
The very coining of the words ‘‘genotype’’ and ‘‘phenotype’’ by
Johannsen more than a century ago derived from observations
that inbred isogenic lines of bean plants grown in well-controlled
environments give rise to pods of different size (Johannsen,
1909). Identical twins, although strikingly similar, nevertheless
often exhibit many differences (Raser and O’Shea, 2005). Like-
wise, genotypically indistinguishable bacterial or yeast cells
grown side by side can express different subsets of transcripts
and gene products at any given moment (Elowitz et al., 2002;
Blake et al., 2003; Taniguchi et al., 2010). Even straightforward
Mendelian traits are not immune to complex genotype-pheno-
type relationships. Incomplete penetrance, variable expressivity,
differences in age of onset, and modifier mutations are more
frequent than generally appreciated (Perlis et al., 2010).
We, along with others, argue that the way beyond these chal-

lenges is to decipher the properties of biological systems, and in
particular, those of molecular networks taking place within cells.
As is becoming increasingly clear, biological systems and
cellular networks are governed by specific laws and principles,
the understanding of which will be essential for a deeper com-
prehension of biology (Nurse, 2003; Vidal, 2009).
Accordingly, our goal is to review key aspects of how complex

systems operate inside cells. Particularly, we will review how by
interacting with each other, genes and their products form
complex networks within cells. Empirically determining and
modeling cellular networks for a few model organisms and for
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Most cellular components exert their functions through 
interactions with other cellular components, which can 
be located either in the same cell or across cells, and 
even across organs. In humans, the potential complexity 
of the resulting network — the human interactome — is 
daunting: with ~25,000 protein-coding genes, ~1,000 
metabolites and an undefined number of distinct  
proteins1 and functional RNA molecules, the number of 
cellular components that serve as the nodes of the inter-
actome easily exceeds 100,000. The number of function-
ally relevant interactions between the components of 
this network, representing the links of the interactome, 
is expected to be much larger2.

This inter- and intracellular interconnectivity implies 
that the impact of a specific genetic abnormality is not 
restricted to the activity of the gene product that carries 
it, but can spread along the links of the network and 
alter the activity of gene products that otherwise carry 
no defects. Therefore, an understanding of a gene’s net-
work context is essential in determining the phenotypic 
impact of defects that affect it3,4. Following on from this 
principle, a key hypothesis underlying this Review is 
that a disease phenotype is rarely a consequence of 
an abnormality in a single effector gene product, but 
reflects various pathobiological processes that inter-
act in a complex network. A corollary of this widely 
held hypothesis is that the interdependencies among 
a cell’s molecular components lead to deep functional, 
molecular and causal relationships among apparently  
distinct phenotypes.

Network-based approaches to human disease have 
multiple potential biological and clinical applications. A 
better understanding of the effects of cellular intercon-
nectedness on disease progression may lead to the iden-
tification of disease genes and disease pathways, which, 
in turn, may offer better targets for drug development. 
These advances may also lead to better and more accurate 
biomarkers to monitor the functional integrity of net-
works that are perturbed by diseases as well as to better  
disease classification. Here we present an overview of 
the organizing principles that govern cellular networks 
and the implications of these principles for understand-
ing disease. These principles and the tools and method-
ologies that are derived from them are facilitating the 
emergence of a body of knowledge that is increasingly 
referred to as network medicine5–7.

The human interactome
Although much of our understanding of cellular net-
works is derived from model organisms, the past dec-
ade has seen an exceptional growth in human-specific 
molecular interaction data8. Most attention has been 
directed towards molecular networks, including protein 
interaction networks, whose nodes are proteins that are 
linked to each other by physical (binding) interactions9,10; 
metabolic networks, whose nodes are metabolites that 
are linked if they participate in the same biochemi-
cal reactions11–13; regulatory networks, whose directed 
links represent either regulatory relationships between 
a transcription factor and a gene14, or post-translational 
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Network medicine: a network-based 
approach to human disease
Albert-László Barabási*‡§, Natali Gulbahce*‡|| and Joseph Loscalzo§

Abstract | Given the functional interdependencies between the molecular components in a 
human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects 
the perturbations of the complex intracellular and intercellular network that links tissue  
and organ systems. The emerging tools of network medicine offer a platform to explore 
systematically not only the molecular complexity of a particular disease, leading to the 
identification of disease modules and pathways, but also the molecular relationships among 
apparently distinct (patho)phenotypes. Advances in this direction are essential for identifying 
new disease genes, for uncovering the biological significance of disease-associated  
mutations identified by genome-wide association studies and full-genome sequencing, and 
for identifying drug targets and biomarkers for complex diseases.
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Topological 
objects 

in n dimensions



A

B

The topological 
analysis of the graphs 
allows quantifying the 

architectural 
properties, global or 

local, of natural 
networks. 

Creating "static 
models" of real 

networks



Since 'a graph” is an abstraction of a 

real physical network, the properties' of the 

graph do correspond to the properties of a 

real physical network. 

When we characterize the properties of the 

graph, we, de facto, characterize the 

properties of the “abstracted” physical 

network 

Full abstractive correspondence



A GRAPH is just a GRAPH !!

The is, just a drawing on a 2D plane!

The GRAPH mathematical topological properties 

assume a specific contextual meaning

that depends on the "physical" nature of the 

network that it abstracts.

Leone Gazzella

RhoA PLD1

Ecosistema

Signal transduction

LPS TNFa
Infiammazione



What does it mean to "analyze" a biological network?

Es.
signal 

transduction 
by TcR



ZAP70

SOS

FYN

VAV

PLC

GRB2

LAT

LCK

SHC

RAC1

MEKK1

Step (1) 
Transforming the 
physical network 

into a graph



ZAP70

SOS

FYN

VAV

PLC

GRB2

LAT

LCK

SHC

RAC1

MEKK1

Step (2) 
"Low level” questions 

(close to the graph) 

• Which node has more 
connections? 

• Which node brings more nodes 
in connection? 

• Are there dense aggregates of 
nodes? 

• Is the graph fully connected? 
• Are there nodes with greater 

importance? 
• Is there a path that passes 

through all nodes (Hamiltonian 
path)?



Step (3) 
“High level” questions 

(close to the real network) 

Is the system 'robust? (= tolerant to interferences; fault-tolerant) 
What are the possible regulators / effectors of a molecule? 
Are there cell-type-specific regulatory mechanisms? 
What are the regulatory mechanisms of a certain cellular events? 

What are the side effects of a drug? 
What are the mechanisms of action of a drug? 
What are the general molecular alterations during septic shock? 
What the molecular mechanism of resistance to therapy in AML?



Physical networks are "quantified" in relation
to the reference degree

(Quantitative parameters in the system of
real and rational numbers)

(A): ELEMENTS = Centrality Indexes (at least 17) = analysis of 
individual nodes

(B): GRUPPS = Identification of “node aggregates” 
(cluster, modules, motifs)

(C): NETWORKS = Global statistical properties

ZAP70

SOS

FYN

VAV

PLC

GRB2

LAT

LCK

SHC

RAC1

MEKK1

=



A): ELEMENTS = Centrality indexes

“What are the most important nodes?”
Topologically = Functionally

(B): GROUPS = Identifications of aggregates

“Are there preferential aggregates of nodes?” 
“Which nodes preferentially participates to 

regulatory clusters?”

(C): NETWORKS = Global statistical properties

“Is the network stable” 
“Is the network robust to interferences?"



A

B

C

"Node degree" k = numero di connessioni

A = k 4 B = k 5 C = k 12

"Average degree" <k> = numero medio 
di connessioni/nodo

k4 + k5 + k12 =  <k> 7



"Node degree distribution" P(k) = 
probabilità che un nodo abbia esattamente 

k connessioni  

A

B

C

Probabilità k = ≥ 12 molto bassa (solo C)

Probabilità k = fra 3 e 5 molto alta (la maggioranza dei nodi)



The degree and the 
calculation of its 

distribution P(k) allows 
for a global network 

classification

Regular network

Random network
(ErdÖs-Renyi)

Scale-free network
(Barabasi)

Architectural  
invariance





Overall very homogenous

Node connectivity follows the 
Poisson distribution

The probability to find highly 
connected nodes (with many edges)

decays exponentially
Normally k = 2 or 3

Overall very heterogeneous

Topology is dominated by few
highly interconnected node, (HUBs)

with all other nodes minimally connected

The probability to find highly 
connected nodes (with many edges)

follows a logarithmic trend
(power law)

	

Random network Scale-free network

Generalmente molto omogenei

La connettivita' dei nodi segue la
distribuzione di Poisson.

La probabilita' di trovare nodi 
fortemente connesi (con molti links) 

decade in modo esponenziale.
In genere k = 2 o 3

Generalmente molto eterogenei

Hanno topologia dominata da pochi
nodi fortemente connessi (hubs)
a tutti gli latri nodi poco connessi

La probabilita' di trovare nodi 
fortemente connesi (con molti links) 

segue un andamento logaritmico
(power law)



A “party hub” is a node that 
interacts in a functional module 

with a majority of its 
neighbours (co-expression).

Interactions are 
constitutive

A “date hub” is a node that 
does not interact in any 
functional module with a 

majority of its neighbours (NO 
co-expression).

 Interactions depends 
on the functional 

context.

Differentiating Party and Date Hubs in Protein Interaction
Networks using Semantic Similarity Measures

Edward Casey Kenley
Dept. of Computer Science

Baylor University
Waco, Texas, 76798

casey_kenley@baylor.edu

Lyles Kirk
Dept. of Computer Science

Baylor University
Waco, Texas, 76798

lyles_kirk@baylor.edu

Young-Rae Cho
Dept. of Computer Science

Baylor University
Waco, Texas, 76798

young-
rae_cho@baylor.edu

ABSTRACT
Protein-protein interactions are fundamental to the biolog-
ical processes within a cell. In the scale-free, small-world
network typically modeled by protein interaction networks,
hubs play a key role in maintaining the network structure.
From the biological perspective, hubs are expected to be
functionally essential proteins, participating in critical inter-
actions of biological processes. Hubs can be classified into
two different categories, party hubs (intra-module hubs) and
date hubs (intermodule hubs), which vary in the timing and
place of their associations with their interacting partners.
This paper introduces a novel measure for identifying and
differentiating party and date hubs in a protein interaction
network. Our approach is based on the semantic similarity
measure integrated with Gene Ontology data. Combined
with the centrality measures of degree, betweenness, and
closeness, we demonstrate that this measure detects poten-
tial party hubs and date hubs that match the confirmed
party and date hubs with high accuracy.

Keywords
protein-protein interactions, protein interaction network, hubs,
Gene Ontology, semantic similarity

1. INTRODUCTION
Network topology often hides behavior that is not always

apparent when studying the network’s entities individually.
By decomposing the network with data mining techniques,
such as frequent pattern mining and clustering, the hidden
complexities of the graph can be unraveled. Sometimes even
simple features of the network, such as node connectedness,
are informative. Detecting high-degree hub nodes will usu-
ally reveal structurally critical nodes that hold the network
together. The most pronounced example comes from the
networks of living organisms.
Protein-protein interactions (PPIs) are fundamental to bi-

ological processes within a cell. A protein interaction net-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2011 ACM ISBN 978-1-4503-0796-3/11/08 ...$10.00.

work can be established from the PPI dataset. The hub
in PPI networks is defined as a protein that interacts with
many other proteins. In the scale-free, small-world network
typically modeled by PPI networks, the hubs play a key role
in maintaining the network structure. The hubs communi-
cate with non-hubs efficiently by close links. They also con-
nect with each other and allow information to travel freely
throughout the network.
Previous studies [6, 5] have categorized hubs in PPI net-

works into two distinct classes: party hubs and date hubs.
A party hub interacts with all its neighbors simultaneously
at the same place. These hubs serve as central communica-
tion points within functional modules. A functional module
represents a group of proteins that participate in the same
biological process. Date hubs function oppositely to party
hubs. A date hub interacts with its neighbors at different
times and different place. These hubs function as messen-
gers between different functional modules throughout the
PPI network.
Identifying potential hubs in PPI networks can reveal func-

tionally essential proteins that are conserved in evolution.
Significant correlation between connectivity and essentiality
has been investigated [7, 2]. Since hubs represent essential
proteins, they can be determined by lethality of a cell. Re-
moving a hub protein has a higher chance to be lethal than
removing any non-hub protein. Because the party hubs fa-
cilitate communication within functional modules, removing
one of the party hubs will likely cause a particular biolog-
ical process to stop functioning. On the other hand, since
the date hubs are typically located between functional mod-
ules via interconnections, removing a date hub can partition
the PPI network into several sub-graphs. This can lead to
malfunctioning cooperation between functional modules. In
addition, from the network structure perspective, removing
a date hub causes more damage to the connectivity of PPI
networks than removing a party hub.
Hubs have been classified by gene co-expression experi-

ments. Han et al. [6] evaluated a Pearson correlation coef-
ficient (PCC) between a protein’s mRNA expression levels
and the simultaneous expression levels of its neighbors. Pro-
teins designated as hubs have sufficiently high degree and
their labels are set as party hubs or date hubs depending
on which side of a threshold its PCC score fell on. Han et
al. defined that a hub protein in a PPI network has de-
gree greater than five and the threshold of PCC is set to
one-half. Hubs with PCC scores greater than one-half are
classified into party hubs whereas hubs with PCC scores less

$&0�%&%��� ���



Example of scale-free 
network with Cytoscape



The generation of a scale-free network is (supposedly) 

“simple”!  

When a node has to establish a new connection, it is more 

likely to generate a connection with a node that already 

has many links, bringing them to an exponential growth 

with the increase in the number of network connections. 

Overall, it is a kind of situation: the rich get richer while 

the poor get poorer (in proportion). Nodes “attracting" 

more connections are the network hubs.



Scale-free 
networks are 

“robust” 
(robustness = 

emergent property)

Es. 
oncogenes 
are hubs

A

B

A

A

B

A

A = k 12 
B = k 5

I network biologici sono SCALE-FREE !

P(k) ~ k-ᵞ = robustezza

B

Robustness
Biological networks “often” are “scale-free”!

Robustness 
measures the 
resilience of a 

system to “casual” 
interference





Consistent differences between 
transcription, signalling and metabolic networks



A more conservative conclusion:

Power-law distribution, scale-free structure, 
robustness, preferential attachment and so on

should not ne considered “universal”, absolute
properties of “all” biological networks, 

but 
type-, dimension and context-specific properties.



A

B

"Shortest path" = il tragitto minimo fra due nodi

Shortest path A-B = 4

The minimal number of edges 
between two nodes



A

B

"Average shortest path" = 
il tragitto minimo "medio" fra tutti i nodi

Misura la "navigabilità" globale della rete,
cioè la facilità con cui ci si sposta da un 

nodo all'altro

"Average path length" = distanza media fra i nodi 
(non minima); 

"Diameter" = shortest path (distanza) massima fra i nodi;
Indici di connettività

8

4

“Average shortest path” =
The“average” minimal path between all network 

nodes.

It measures the “navigability” of a network; that is 
the easiness of moving between nodes.

“Diameter” = the maximal shortest path between all 
network nodes

“Average path length” = the “average” distance (not 
shortest) between all network nodes



Example of shortest path 
calculation with Cytoscape



A

B

C

B

C A

"Clustering coefficient" C = 
probabilità che se A -- B e B -- C allora A -- C

"Average Clustering coefficient" <C> = 

Probabilità media della rete di formare clusters.

Indica la tendenza globale dei nodi 
ad organizzarsi in gruppi (clusters)

Probability that if A is connected to B, and B is connected to C, then A is connected to C

Probability of 
cluster generation by

individual nodes
and/or

overall network

Average probability of the network to generate clusters

Measure the global tendency of nodes to 
organise themselves in groups (clusters)



A

B

C

B

C A

Decomposizione modulare
 (ad es. MCODE)

Modular decomposition
es. MCODE



Example of network 
modular decomposition 

within Cytoscape



"Node degree distribution" P(k)
(scale-free topology)

+

"Average Clustering coefficient" <C> 
(decomposizione modulare)

=

ANALISI GERARCHICA DELLE RETI

I network biologici sono 
scale-free, modulari e gerarchici !

P(k) ~ k-ᵞ C1 = 2n1/k(k-1)

Biological networks can be scale-free,
modular and hierarchical 

Hierarchical network analysis



Cl concentrations in the Sajama ice core, and to
a number of other pedological and geomorpho-
logical features indicative of long-term dry cli-
mates (8 , 11–14, 18 ). This decline in human
activity around the Altiplano paleolakes is seen
in most caves, with early and late occupations
separated by largely sterile mid-Holocene sed-
iments. However, a few sites, including the
caves of Tulan-67 and Tulan-68, show that
people did not completely disappear from the
area. All of the sites of sporadic occupation
are located near wetlands in valleys, near
large springs, or where lakes turned into wet-
lands and subsistence resources were locally
still available despite a generally arid climate
(7 , 8 , 19 , 20 ).

Archaeological data from surrounding ar-
eas suggest that the Silencio Arqueológico
applies best to the most arid areas of the
central Andes, where aridity thresholds for
early societies were critical. In contrast, a
weaker expression is to be expected in the
more humid highlands of northern Chile
(north of 20°S, such as Salar Huasco) and
Peru (21). In northwest Argentina, the Silen-
cio Arqueológico is found in four of the six
known caves (22) [see review in (23 )]. It is
also found on the coast of Peru in sites that
are associated with ephemeral streams (24).
The southern limit in Chile and northwest
Argentina has yet to be explored.
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Network Motifs: Simple Building
Blocks of Complex Networks

R. Milo,1 S. Shen-Orr,1 S. Itzkovitz,1 N. Kashtan,1 D. Chklovskii,2

U. Alon1 *

Complex networks are studied across many fields of science. To uncover their
structural design principles, we defined “network motifs,” patterns of inter-
connections occurring in complex networks at numbers that are significantly
higher than those in randomized networks. We found such motifs in networks
from biochemistry, neurobiology, ecology, and engineering. The motifs shared
by ecological food webs were distinct from the motifs shared by the genetic
networks of Escherichia coli and Saccharomyces cerevisiae or from those found
in the World Wide Web. Similar motifs were found in networks that perform
information processing, even though they describe elements as different as
biomolecules within a cell and synaptic connections between neurons in Cae-
norhabditis elegans. Motifs may thus define universal classes of networks. This
approach may uncover the basic building blocks of most networks.

Many of the complex networks that occur in
nature have been shown to share global statis-
tical features (1–10 ). These include the “small
world” property (1–9 ) of short paths between
any two nodes and highly clustered connec-
tions. In addition, in many natural networks,
there are a few nodes with many more connec-
tions than the average node has. In these types

of networks, termed “scale-free networks” (4,
6 ), the fraction of nodes having k edges, p(k),
decays as a power law p(k) ! k–" (where " is
often between 2 and 3). To go beyond these
global features would require an understanding
of the basic structural elements particular to
each class of networks (9 ). To do this, we
developed an algorithm for detecting network
motifs: recurring, significant patterns of inter-
connections. A detailed application to a gene
regulation network has been presented (11).
Related methods were used to test hypotheses
on social networks (12, 13 ). Here we generalize
this approach to virtually any type of connec-
tivity graph and find the striking appearance of

1Departments of Physics of Complex Systems and
Molecular Cell Biology, Weizmann Institute of Sci-
ence, Rehovot, Israel 76100. 2Cold Spring Harbor Lab-
oratory, Cold Spring Harbor, NY 11724, USA.

*To whom correspondence should be addressed. E-
mail: urialon@weizmann.ac.il

Fig. 1. (A) Examples
of interactions repre-
sented by directed
edges between nodes
in some of the net-
works used for the
present study. These
networks go from the
scale of biomolecules
(transcription factor
protein X binds regu-
latory DNA regions
of a gene to regulate
the production rate
of protein Y),
through cells (neuron
X is synaptically con-
nected to neuron Y),
to organisms (X
feeds on Y). (B) All 13 types of three-node connected subgraphs.
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Network motifs are sub-graphs that 
repeat themselves in a specific network or 

even among various networks. 

Motifs are local property of networks, 
defined as recurrent and statistically 
significant sub-graphs or patterns.

Motifs may reflect functional properties and 
are used as useful concept to uncover 
structural design principles of complex 

networks.



“Network motifs” = directed patterns of node connections that
 appear more frequently in real networks than in random 

networks artificially generated by computers



I "network motifs" sono patterns che compaiono
piu' frequentemente in network reali puttosto che in

random network generati al compuer.

3 nodi = 13 possibili configurazioni

4 nodi = 199 possibili configurazioni

“Network motifs”: many possible configurations depending
on node number







In tutti i network INFORMAZIONALI 
(incluso signal transducion e gene expression)

si generano "feed-forward" loops e
"bi-fan" network motifs.

Nei network metabolici 
si generano motifs differenti.

A B C

A B

C D

Feed-forward loop

Bi-fan

In all informational networks 
(including signalling and gene 

expression networks) “feed-forward 
loops” and “bi-fan” motifs are 

present.  

In metabolic networks different motifs 
are generated



This suggests that the basic 
building blocks of natural 

networks are context specific. 

An important question: 

Is network evolution and 
functional diversification controlled 

by basic mathematical rules?



How to categorise nodes? And 
is it possible to identify the 

most important ones?



Indexes of centrality based on the calculation of the 
shortest path

• Betweenness 
• Stress 
• Centroid 
• Radiality 
• Eccentricity 
• Closeness 
• Bridging centrality 
• Eigenvector

http://www.centiserver.org


Node betweenness indicates the functional 
relevance of the node as capable of bringing in 
communication individual nodes or set of nodes 
in a network. Thus a high betweenness score 
indicates the ability of a node to function as a 
communicator node. For example, if a graph 

node does abstract a signaling protein, then that 
protein is able to keep in functional 

communication other distant proteins, facilitating 
the informational biochemical flow



A E

F

G

B

C

D

Es. betweenness



Node centroid indicates the "probability '' that a node has 
to organise (bringing along) clusters of nodes or 

functional modules. A high value indicates the centroid 
capacity of a node to function as an organiser of 

functional modules. 

For example, if the graph abstracts a signaling network, 
then a protein (node) with high centroid is able to act as 
coordinator of closely linked proteins (signalosomes), 

thus greatly facilitating the emergence and coordination 
of specific biochemical functions.



Es. centroid

Adhesion Cytoskeleton

Chemotaxis



Example of centrality 
calculation within 

Cytoscape



"Node degree"

"Average degree" 

"Node degree distribution"   

"Shortest path"

"Average shortest path" 

"Diameter"

"Clustering coefficient"

"Average Clustering coefficient" 

Modular decomposition

Network motifs

"Centrality"

Summary of possible
graph quantifications
(rather incomplete!)



(3) 
"High level questions" 

Is the system  robust? (= tolerant to interference) 
What are the possible regulators / effectors of a molecule? 

Are there cell-type-specific regulatory mechanisms? 
What are the regulatory mechanisms of a certain cellular events? 

What are the side effects of a drug? 
What are the mechanisms of action of a drug? 

What are the general molecular alterations during septic shock? 
What the molecular mechanism of resistance to therapy in B-CLL 

leukaemia?



Example:
B-CLL 

= 
B-cell chronic lymphoid leukaemia

Chronic lymphocytic leukaemia (CLL) is the most 
common leukaemia in the Western world. 

Diagnosis is based on the results of flow cytometric 
analysis of malignant B cells obtained from peripheral 

blood, bone marrow, lymph nodes, and other organs. 



CDKN2A
KRAS
NRAS
PTEN
SF3B1
AKT1
ATM
BCL2
BAG1
MCL1
BAX

DAPK1
EIF2AK2
MDM2
MMP9
NFKB1

PIK3C2A
PIK3C2B
TCL1A
TERT

TNFSF13
TNFSF13B

TP53
ZAP70
DLEU7
DLEU1
DLEU2

NOTCH1
BIRC3

MYD88
XPO1
ROR1

CXCR4
CXCL12

BCR
LYN
SYK

BTK
PIK3C2A
PIK3C2B
PIK3CD
AKT1
MTOR
PRKCB
PRKCG
PRKCD
PRKCE
PRKCZ
PIM1
PIM2
PIM3

MAP3K14
miR15a
miR16a
miR34b
miR34c
miR29b
miR181b

Genes involved in B-CLL pathogenesis and progression



ING1

SIN3A

NOC3L

TAF9

PFDN6

RASSF1

TSR2

DNAJB6
CIB1

RNMTL1
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IRF8
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SPRYD3

OSBPL10

CD3EAP COMMD9
PPP1R13L

PDCD11

SNAI1

IRF9

IRF1
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H2AFX
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CSNK2A1
EIF2AK4
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RPA1

RPS17

FBXO11

APLP1

ZNF639HIST1H2AG
SUPT6HNOP10

HTATSF1DPY30RPS19

RPL3

FLNA

BRE
ACVR2B

ASPM MLH1

RSF1

LANCL2

PDK2

ELL
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Example (1): B-CLL-related gene network: most important genes?



POLR1A  980.5752201218744 
BCL2L10  98.1129828243036 
CASP8        972.9847961866025 
HIST1H2AG 93.81629994245209 
PRKCE 91.36638628304313 
UBE2K   9.704326174914408 
MOBKL1B   89.42005465096672 
H2AFX    873.2376959559298 
CSNK2A2 850.3599434784832 
E2F1 85.79770426816815 
RAF1 841.8706710726763 
EZR 808.7017530971103 
KRT14  805.3953908450881 
APLP2   8.632076269691636 
OSBPL10 8.461386862034189 
THRAP3 796.3531866931876 
XRCC1  78.35366944609784 
SMC1A 76.96810224719924 
RNMTL1 76.27244149308481 
BAG1 76.12150503512692

The betweenness allows creating 
"a hierarchical" distribution in the 
nodes of a graph. 
  
If the graph abstract a signal 
transduction network controlling 
a leukaemia, such as B-CLL, 
then the nodes with the highest 
betweenness are proteins which 
have a greater regulatory role in 
that specific pathology. Thus, 
they could be critical targets of 
therapy.



POLR1A      980.5752201

CASP8             972.9847962

H2AFX             873.237696

CSNK2A2      850.3599435

RAF1             841.8706711
EZR                  808.7017531

KRT14             805.3953908

THRAP3       796.3531867

BCL2L10         98.11298282

HIST1H2AG   93.81629994
PRKCE                91.36638628

MOBKL1B          89.42005465

E2F1                 85.79770427

XRCC1           78.35366945

SMC1A            76.96810225
RNMTL1           76.27244149

BAG1                  76.12150504

UBE2K                    9.704326175

APLP2                    8.63207627

OSBPL10              8.461386862



Example (2) of network topological analysis with Cytoscape 

The Context: 
B-CLL (B-cell Chronic Lymphocytic Leukaemia)  

and  
CML (Chronic Myeloid Leukaemia) 

The questions: 
Are there common driver genes between the two leukemias? 

If so, which are most important ones? 
And is it possible to identify drugs to block them? 

The context: 
Signal transduction 

+ 
Human protein-protein interactome (PPI)



Definitions: 

Signal transduction = a complex homeostatic molecular 
system controlling environmental information processing 

in all living forms (bacteria —> humans); about 5000 
genes 

  
Protein-protein interactome (PPI) = the ensemble of all 

“known” protein-protein binary physical interaction 
occurring in a species (genetically determined)  

(to date: 16501 proteins - 308822 binary interactions; estimated to be 
about 400000-500000 binary interactions) 

The PPI interactome is the space of all possible protein-protein 
interactions in which all biochemical events of signalling may potentially 

occur.



1. FN network of BCR-ABL1 (Chr 9-22; Philadelphia) 
2. FN network from B-CLL probe 
3. Subnetwork from intersection 
4. Calculating centralities  
5. Identification of kinases and phosphatases 
6. Sub-network inference upon extraction of 

kinases and phosphatases with high centrality 
indexes (over the average) 

The logic: novel anti-leukemia drugs are mainly 
kinase inhibitors

Analysis flow-chart



2. FN network from B-CLL probe 
= 

4823 nodes (proteins) 

191065 binary interactions

1. FN network of BCR-ABL1 
= 

584 nodes (proteins) 

14731 binary interactions



3. Subnetwork from intersection

FN network of BCR-ABL1 
= 

584 nodes (proteins) 

14731 binary interactions

FN network of B-CLL 
= 

4823 nodes (proteins) 

191065 binary interactions

Shared signalling proteins 
between

CML and B-CLL



3.Subnetwork from intersection
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474 nodes (proteins)
13791 binary interactions



4.Calculating centralities (es. Degree)
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5. Identification of kinases and phosphatases with higher 
centrality indexes (three interpolated indexes)

BCR

ABL1

EGFR

JAK2

SRC

KIT

LYN

BTK

PIP3K

JAK1

PTPRG

“Distillate” from CML_B-CLL intersection
474 nodes (proteins)

13791 binary interactions



6. Possible targets of novel anti-leukemia 
drugs for both CML and/or B-CLL

BCR
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EGFR

JAK2

SRC

KIT

LYN

BTK

PIP3K

JAK1

PTPRG

Ibrutinib
B-CLL

Imatinib
CML Ruxolitinib

AR



BCR

ABL1

EGFR

JAK2

SRC

KIT

LYN

BTK

PIP3K

JAK1

PTPRG

Ibrutinib
B-CLL

Imatinib
CML Ruxolitinib

AR

?





FN3 T
M D2Carbonic 

anhydrase-like1 1445
N - - C

PTPRG-WEDGE

831 856

D1

TYR-
PHOSPHATASE

846 1407



Table I. Summary of Kinexus high-throughput phospho-proteomics data 
(Mirenda M, Toffali L, Montresor A, Scardoni G, Sorio C and Laudanna C. Protein tyrosine phosphatase, receptor type, gamma (PTPRG) is a JAK phosphatase and negatively regulates leukocyte 
integrin activation. Journal of Immunology 2015 PubMed PMID: 25624455.) 
HGNC protein 

symbols  p-Site % p-Site % p-Site % p-Site % Functional effect of P1-WD 

ABL1 Y412 -40             inhibition 
BLNK Y84 19             activation 
BMX Y40 -7             inhibition 
BTK Y223 -58             inhibition 

CDK2 Y15 282             inhibition 
CTTN Y470 21             inhibition 
DAB1 Y198 -34             inhibition 
DOK2 Y142 9             activation 
EGFR Y1068 -13 Y1148 -16 Y1173 68     inhibition/inhibition/activation 

ERBB2 Y1248 34             activation 
GRIN2B Y1474 29             activation 

INSR Y999 58 Y1189/Y1190 27         activation/activation 
ITGB1 Y783 -11             inhibition 
JAK2 Y1007/Y1008 -33             inhibition 
KDR Y1054 -37 Y1054+Y1059 22         inhibition 
KIT Y703 -60 Y730 -47         inhibition 

LIMK1 Y507 -10             inhibition 
MET Y1003 -47             inhibition 

PDGFRA Y742 133 Y754 86         activation 
PDGFRB Y716 -36             inhibition 
PRKCD Y313 189             activation 
PTK2 Y397 30 Y577 -60 Y576 65 Y861 -11 activation/inhibition/activation/inhibition 
PXN Y118 144 Y31 19         activation/activation 

SHC1 Y349+Y350 -10             inhibition 
SRC Y419 -6 Y530 94         inhibition/inhibition 

STAT1 Y701 38             activation 
STAT2 Y690 61             activation 
STAT3 Y705 182             activation 

STAT5A Y694 50             activation 
VCL Y821 -20             inhibition 

ZAP70 Y292 -46 Y315+Y319 12         activation/activation 

 
The table shows the 31 identified proteins whose tyrosine phosphorylation is affected by PTPRG activation. Values reported in % columns are percent increase or 
decrease of protein tyrosine phosphorylation upon fMLP triggering, in P1-WD-treated versus P1-treated monocytes. For some proteins (EGFR, INSR, KDR, KIT, 
PDGFRA, PTK2, PXN, SRC and ZAP70) multiple phosphotyrosine residues are detected. From left to right, columns are HGNC protein symbols (in alphabetic 
order), phosphosites (p-Sites), % changes of phosphorylation (induced by P1-WD) and the putative functional effect, inferred from literature data mining. EGFR and 
PTK2 are highlighted in gray since the functional effect could not be unambiguously inferred.!
!

BCR

ABL1

EGFR

JAK2

SRC

KIT

LYN

BTK

PIP3K

JAK1

PTPRG

Proteomic analysis of PTPRG targets of tyrosine phosphorylation



Conclusion

Comparative network topological analysis coupled to 
phospho-proteomic analysis shows that:

B-CLL and CML may have at least 4 common drive genes
of the category of protein kinases and phosphatases

At least 3 known compounds can be re-purposed

PTPRG may be a novel target for drug development and therapy in 
leukaemia



But why the topology of a “graph” simply 

drawn on a 2D plan … should predict a 

“real” biological function within a living 

cell?



The receptor-function paradigm

Signal transduction is relies on molecular domains



Stimulus

Function



Physical interaction

The graph is “collinear” with 
the physical interaction 

between proteins 

Graph topology is “collinear” 
with the topology of the 

protein complex

Graphs are STATIC ABSTRACTIONS 
of signalling networks

Euler abstraction



Molecular domains
A

B

BB

MTRLPDSF ..... STALYY

MFFDSTYA ..... PPRPPY

=

=

GCAATGATA ..... GGTAAGCT

AATGCCTTAG .... AATCCGTA

A

B

A A

B B

a

b



The topological structure of a graph is collinear 
with the topological structure of the protein networks which, in 
turn, is collinear with the architecture of the protein domains, 

which, in turn, are collinear with the structure of genes. 

THEN 

The topological structure of protein networks is written in the 
sequence of the genes. 

The genome is fully collinear with the topology of the networks 
and determines it! 

The topology of protein-protein interaction (PPI) networks does 
reflect the DNA sequence! 

PPI network topology is written by evolution (genetic drift)



Evolution must follow specific rules (mutation on specific 
gene sites coding for protein domains), to generate gene/

protein varieties, still  capable of conserving specific 
network topological properties, facilitating cell adaptation 

and survival in the environment. 

Mutations not respecting previous network architecture 
may generate new properties  (evolution)

OR 
may lead to alteration of homeostasis (cancer)!



Network building
(from experiments)

Computation
(from mathematics)

Topological 
properties

(contextual)

Inferred
mechanisms

+

Extracting information
from the system complexity

(training complexity)

Is topology alone enough?



Systems Biology is an integrated, 
multidisciplinary discipline that is 
concerned with studying complex 

biological systems (living). 

"Theoretical biology, integrative biology, network 

biology, multidimensional biology, network 

medicine, personalized medicine, precision 

medicine, etc.”



Multi-dimensional biology?

Definition:
A dimension corresponds to the number of degrees 
of freedom avai lable to “movement“ in a 
“space” (informational space).

In common language, the dimensions of an object 
are the measurements (numbers) defining its shape 

and its size, that is the 3D space it occupies.



2 3 n
+

Time
Degree of freedom in space-time 

This definition derives from to the common use made in normal
geometry, but it may greatly differs with regard to different physical contexts.



Dimension = Degree of freedomObject

A physical object can have many degree of freedom, 
NOT necessarily limited to a 4-dimensional space 
BUT in a space of functions (properties) (what is 
called phase-space)

In dynamical systems theory is called phase-space of 
a system the space whose points represent uniquely 
all and only the possible functional states of the 
system. In general the phase space has as many 
dimensions as degrees of freedom of the system.



Small GTPase RhoA

3 space dimensions

n dimensions in space of 
“functions”  

(= phase space)

Cytoskeleton assembly 
Adhesion regulation 
Integrin activation 
Gene expression 
Cell proliferation 
... n

RhoA has 3 space dimensions + n functional dimensions



ZAP70

SOS

FYN

VAV

PLC

GRB2

LAT

LCK

SHC

RAC1

MEKK1

Multidimensional network 
analysis. 

Multilayered analysis
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A network-based analysis of systemic inflammation
in humans
Steve E. Calvano1*, Wenzhong Xiao2*, Daniel R. Richards3, Ramon M. Felciano3, Henry V. Baker4,5,
Raymond J. Cho3, Richard O. Chen3, Bernard H. Brownstein6, J. Perren Cobb6, S. Kevin Tschoeke5,
Carol Miller-Graziano7, Lyle L. Moldawer5, Michael N. Mindrinos2, Ronald W. Davis2, Ronald G. Tompkins8,
Stephen F. Lowry1 & the Inflammation and Host Response to Injury Large Scale Collaborative Research
Program†

Oligonucleotide and complementary DNA microarrays are being
used to subclassify histologically similar tumours,monitor disease
progress, and individualize treatment regimens1–5. However,
extracting new biological insight from high-throughput genomic
studies of human diseases is a challenge, limited by difficulties in
recognizing and evaluating relevant biological processes from
huge quantities of experimental data. Here we present a structured
network knowledge-base approach to analyse genome-wide tran-
scriptional responses in the context of known functional inter-
relationships among proteins, small molecules and phenotypes.
This approach was used to analyse changes in blood leukocyte
gene expression patterns in human subjects receiving an inflam-
matory stimulus (bacterial endotoxin). We explore the known
genome-wide interaction network to identify significant func-
tional modules perturbed in response to this stimulus. Our
analysis reveals that the human blood leukocyte response to
acute systemic inflammation includes the transient dysregulation
of leukocyte bioenergetics and modulation of translational
machinery. These findings provide insight into the regulation of
global leukocyte activities as they relate to innate immune system
tolerance and increased susceptibility to infection in humans.
Inflammation is a hallmark of many human diseases6–8. We focus

on blood leukocytes and other tissues of critically injured patients, in
order to better elucidate the mechanisms underlying systemic
inflammatory responses9. This approach cannot be fully replicated
using animal models or human cell lines, and studies of injury in
humans can be complicated by antecedent illnesses and concurrent
treatment regimes that may alter the recovery process. To our
knowledge, no study has evaluated the genome-wide response to
systemic inflammation in the context of a fully predictable recovery.
Here we combine genome-wide expression analysis with a new
bioinformatics method to identify functional networks responsible
for the systemic activation and spontaneous resolution of a well-
defined inflammatory challenge.
Gene expression in whole blood leukocytes was determined

immediately before and at 2, 4, 6, 9 and 24 h after the intravenous
administration of bacterial endotoxin to four healthy human sub-
jects. Four additional subjects were studied under identical con-
ditions but without endotoxin administration. The infusion of

endotoxin activates innate immune responses and presents with
physiological responses of brief duration10. Notably, there is an initial
proinflammatory phase and a subsequent counterregulatory phase,
with resolution of virtually all clinical perturbations within 24 h.
K-means cluster and principal component analyses were first used

to visualize the overall response to endotoxin administration. Figure
1a reveals probe sets clustered byK-mean analysis, where each bin has
a distinct endotoxin-induced temporal pattern. The signal intensity
of 5,093 probe sets—representing 3,714 unique genes—out of a total
of .44,000 probe sets changed significantly in response to endo-
toxin, whereas no significant changes were observed in control
subjects (estimated false discovery rate ,0.1%). Of the 5,093 probe
sets identified, over half showed reduced abundance at 2, 4, 6 and 9 h,
returning to baseline by 24 h (see bins 0–4). In contrast, a smaller
number of probe sets were induced by 2 h (bins 5, 6), and the
remaining probe sets showed a delayed response, peaking at 4–9 h but
returning to baseline by 24 h (bins 7–9).
Cluster and principal component analyses describe overall changes

in apparent gene expression, but provide few insights into the
biological processes and signalling networks invoked in propagation
and resolution of the inflammatory response. Identifying the per-
turbed biological networks underlying this complex clinical pheno-
type requires systematic analysis in the context of knownmammalian
biology, derived from basic and clinical research.
Using a web-based entry tool developed by Ingenuity Systems Inc.,

findings presented in peer-reviewed scientific publications were
systematically encoded into an ontology by content and modelling
experts. Using over 200,000 full-text scientific articles, a knowledge
base of more than 9,800 human, 7,900mouse and 5,000 rat genes was
manually curated and supplemented with curated relationships
parsed from MEDLINE abstracts. A molecular network of direct
physical, transcriptional and enzymatic interactions observed
between mammalian orthologues—the observed ‘interactome’—
was computed from this knowledge base. The resulting network
contains molecular relationships involving over 8,000 orthologues
with a high degree of connectivity. On average, individual genes have
11.5 interaction partners (median 4.0), of which 7.2 represent direct
physical interactions (median 3.0). Every gene interaction in the
network is supported by published information. For example, the
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Single Cell Profiling of Potentiated
Phospho-Protein Networks in Cancer Cells

sion include mutations to key signaling proteins as well
as epigenetic changes to gene expression patterns (Ha-
nahan and Weinberg, 2000). Cancer genesis occurs in

Jonathan M. Irish,1 Randi Hovland,2,3

Peter O. Krutzik,1 Omar D. Perez,1

Øystein Bruserud,3,4 Bjørn T. Gjertsen,3,4

a stepwise progression, has underlying stochastic ele-and Garry P. Nolan1,*
ments, and is reflective of the genetic selection of the1Department of Microbiology & Immunology
cancer in the face of both immune system action andBaxter Laboratory of Genetic Pharmacology
the environmental requirements of cancer cells. The sig-Stanford University
naling profile of any given cancer cell is therefore theStanford, California 94305
sum of numerous influences: epigenetic, genetic, and2 Center for Medical Genetics and Molecular
microenvironmental. The current molecular understand-Medicine
ing of cancer signaling rests largely on extrapolationsHaukeland University Hospital and Proteomic Unit
from studies of cell lines and as such is not adequately(PROBE)
representative of the signaling phenotypes of a complexUniversity of Bergen
population of cancer cells in the body. In contrast, theBergen
heterogeneity of cancer cell responses to therapy canNorway
be thought of as mirroring the signaling differences that3 Department of Internal Medicine
have arisen during evolution of the cancer cell popula-Haematology Section
tion in the body. Until now, this cell by cell informationHaukeland University Hospital
on cancer cell populations—required to model signalingBergen
network pathologies that relate to cancer cell subsetsNorway
and disease progression—has not been available for4 Institute of Medicine
analysis.Haematology Section

Phospho-protein members of signaling cascades,University of Bergen
and the kinases and phosphatases that interact withBergen
them, are required to initiate and regulate proliferativeNorway
signals within cells. It might be predicted that genetic
changes common in cancers, such as receptor tyrosine
kinase mutations and other signaling-related cytoge-Summary
netic alterations (Spiekermann et al., 2002; Wheatley et
al., 1999), would change the potential of pre-existingAltered growth factor responses in phospho-protein-
signaling networks to respond to external stimuli anddriven signaling networks are crucial to cancer cell
lead to identifiable patterns of signal transduction asso-survival and pathology. Profiles of cancer cell signaling
ciated with gene mutation. For instance, acute myeloidnetworks might therefore identify mechanisms by which
leukemia (AML) is a cancer wherein dysregulated growthsuch cells interpret environmental cues for continued
and inhibition of apoptosis lead to the accumulation ofgrowth. Using multiparameter flow cytometry, we mon-
immature myeloid progenitor cells and oncogenic pro-itored phospho-protein responses to environmental
gression (Lowenberg et al., 1999). Two key parallel signalcues in acute myeloid leukemia at the single cell level.
transduction networks active in cells that are consideredBy exposing cancer cell signaling networks to potenti-
progenitors of AML (Reya et al., 2001) are the STATating inputs, rather than relying upon the basal levels
pathway (Coffer et al., 2000; Smithgall et al., 2000) andof protein phosphorylation alone, we could discern
the Ras/MAPK pathway (Platanias, 2003). Several re-unique cancer network profiles that correlated with ports suggest that STATs, such as Stat3 and Stat5, are

genetics and disease outcome. Strikingly, individual can- constitutively activated in AML (Benekli et al., 2002; Birk-
cers manifested multiple cell subsets with unique net- enkamp et al., 2001; Turkson and Jove, 2000; Xia et al.,
work profiles, reflecting cancer heterogeneity at the 1998). But, a causal link between basal STAT phosphory-
level of signaling response. The results revealed a dra- lation and leukemogenesis in primary patient material
matic remodeling of signaling networks in cancer has not been demonstrated, despite significant evi-
cells. Thus, single cell measurements of phospho-pro- dence implicating these proteins in oncogenic pro-
tein responses reveal shifts in signaling potential of a cesses (Benekli et al., 2003; Bowman et al., 2000; Buet-
phospho-protein network, allowing for categorizing of tner et al., 2002; Calo et al., 2003; Nieborowska-Skorska
cell network phenotypes by multidimensional molecu- et al., 1999). Thought to act upstream of these pathways,
lar profiles of signaling. abnormalities of the Flt3 (fms-like tyrosine kinase 3 )

receptor tyrosine kinase are detected in approximately
Introduction 30% of AML patients and are well established as a nega-

tive prognostic indicator in AML (Gilliland and Griffin,
Intracellular signaling and interpretation of environmen- 2002; Kottaridis et al., 2001; Thiede et al., 2002). Expres-
tal cues play central roles in cancer cell initiation and sion of mutant, activated Flt3 in cell lines has been ob-
maintenance. Actions that lead to cancer cell progres- served to activate STAT and Ras/MAPK signaling (Haya-

kawa et al., 2000; Mizuki et al., 2000). However, basal
levels of Stat5 phosphorylation have been reported to*Correspondence: gnolan@stanford.edu



Example	(2) 

(De	Franceschi	et	al.) 

Virtual cell 

= 

GLOBAL	Network	=	14500	nodes	(proteins)	-	94600	interactions 

The experiment:	red blood cells, either normal (WT)	or	PTPRE	-/-	(KO) 

Protein phosphorylation patterns (2D-SDS-PAGE) 

Two LISTs of protein phosphorylated in
WT and KO red blood cells 

The LISTs are what are called “bioinformatic probes”

The lists are used to extract, from the GLOBAL network, 
two sub-networks specifically built upon the two sets 
of phosphorylated protein experimentally identified. 

The phosphorylation level is called “node attribute” of the networks

Set-specific sub-networks (WT and KO) are ANNOTATED 

Example (1) of network multidimensional analysis





WT



PTPRE -/-



Decomposizione modulare

Fyn - Yes - Syk

Most relevant hits suggesting the functional effect 
of PTPRE deficiency





Glioblastoma multiforme (GBM), also known as glioblastoma and grade IV 
astrocytoma, is the most common and aggressive brain cancer 

Worsening of symptoms is often rapid. The most common length of survival 
following diagnosis is 12 to 15 months with less than 3 to 5% of people surviving 
greater than five years. Without treatment survival is typically 3 months.  

About 3 per 100,000 people develop the disease a year. 

Example (2) of network multidimensional 
analysis - GBM

https://en.wikipedia.org/wiki/Cancer


The experimental data:
Activated PTPRG triggers in vitro apoptosis in GBM cells

The questions: 
Which is the mechanics of action of activated PTPRG on 

triggered apoptosis in Glioblastoma multiforme? 

Is PTPRG a tumor-suppressor gene? 



Phosphoproteomics analysis (Kinexus) of 
GBM cell upon PTPRG activation - concept 
of bioinformatics probe (node dimensions - functional 
space) 
GBM network reconstruction from Kinexus 
data-set (calculating first neighbor - FN) 
Calculating centralities and identification of 
most relevant nodes (nodes with betweenness + 
centroid over network average) 
Shortest-path (SP) calculation from PTPRG 
to “extracted” nodes

Analysis flow-chart



Phosphoproteomics analysis  
(Kinexus) of GBM cell upon  

PTPRG activation  
(concept of bioinformatics probe) 

GBM network reconstruction from  
Kinexus data-set  

(calculating first neighbour - FN)



Calculating centralities and identification of most relevant nodes 
(nodes with betweenness + centroid over network average)



Shortest-path (SP) calculation from PTPRG to 
“extracted” most relevant nodes

AKT1

HSP90AB1HSP90AA1

EGFR



Conclusions
1) Most relevant signaling proteins possibly leading to PTPRG-triggered GBM apoptosis

2) Inferred signaling protein from SP analysis linking PTPRG to most relevant signaling proteins

AKT1

HSP90AB1HSP90AA1

EGFR



(8) 
Dynamics models: kinetics in biology

Graphs are “STATIC” ABSTRACTIONS of biological networks 
BUT 

Biology is mainly change! 
(Mutation, Selection, Adaptation, Evolution) 

To model the change in biology we need to take into account: 

- The system structure (topological architecture) 

- The rules governing the change 

- The quantitative data characterising the binary relationships 

- The time factor



The frequencies of calcium oscillations are optimized
for efficient calcium-mediated activation of Ras
and the ERK!MAPK cascade
Sabine Kupzig*, Simon A. Walker† , and Peter J. Cullen*‡
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Ras proteins are binary switches that, by cycling through inactive
GDP- and active GTP-bound conformations, regulate multiple cel-
lular signaling pathways, including those that control growth and
differentiation. For some time, it has been known that receptor-
mediated increases in the concentration of intracellular free cal-
cium ([Ca2!]i) can modulate Ras activation. Increases in [Ca2!]i

often occur as repetitive Ca2! spikes or oscillations. Induced by
electrical or receptor stimuli, these repetitive Ca2! oscillations
increase in frequency with the amplitude of receptor stimuli, a
phenomenon critical for the induction of selective cellular func-
tions. Here, we show that Ca2! oscillations are optimized for
Ca2!-mediated activation of Ras and signaling through the extra-
cellular signal-regulated kinase (ERK)!mitogen-activated protein
kinase (MAPK) cascade. We present additional evidence that Ca2!

oscillations reduce the effective Ca2! threshold for the activation
of Ras and that the oscillatory frequency is optimized for activation
of Ras and the ERK!MAPK pathway. Our results describe a hitherto
unrecognized link between complex Ca2! signals and the modu-
lation of the Ras!ERK!MAPK signaling cascade.

RASAL " CAPRI " GRF " GDP

For a wide variety of cell surface receptors, activation leads to
an increase in the concentration of intracellular free calcium

([Ca2!]i) (1–3). Once induced, the elevation in [Ca2!]i is respon-
sible for controlling a diverse array of cellular processes, includ-
ing secretion, contraction, learning, and proliferation (3). Un-
derstanding how receptor-mediated increases in [Ca2!]i are
capable of modulating so many physiological processes is one of
the major challenges in the study of Ca2! signaling. It appears
that such control is achieved through a complex relationship
between the amplitude and spatiotemporal patterning of the
Ca2! signal and its resultant ability to couple to an extensive
molecular repertoire of Ca2!-sensing proteins (3).

Receptor-mediated increases in [Ca2!]i are often observed as
repetitive Ca2! spikes or oscillations that increase their fre-
quency with the amplitude of the receptor stimuli (refs. 4 and 5;
reviewed in ref. 3). These frequency-encoded signals appear to
be critical for the induction of selective cellular functions (3). For
example, the frequency of receptor-mediated Ca2! oscillations
determines the efficiency of gene expression driven by the
transcription factors NF-AT, OAP, and NF-!B (6–8) and mi-
tochondrial ATP production (9). To decode the information
contained within Ca2! oscillations, cells have evolved a number
of frequency-modulated decoders. Such proteins include cal-
modulin (10), protein kinase C (11–15), calpain (16), calmodu-
lin-dependent protein kinase II (17, 18), and the Ras GTPase-
activating protein RASAL (19).

Ras proteins are binary molecular switches that regulate
multiple signaling pathways, including those controlling growth
and differentiation, through an ability to cycle between inactive
GDP- and active GTP-bound conformations (20–23). The mag-
nitude and duration of Ras signaling is controlled by two classes

of proteins: Guanine nucleotide exchange factors modulate Ras
activation by enhancing the exchange of GDP for GTP, and
GTPase-activating proteins regulate inactivation by increasing
the intrinsic Ras GTPase activity (20–23). Although it has been
known for some time that increases in [Ca2!]i can modulate Ras
activation (for example, Ca2! influx through voltage-operated
ion channels or release from internal stores can activate Ras in
neuronal cells) (24), only recently have molecular entities been
described that allow for this coupling (reviewed in ref. 25).

Two families of Ras guanine nucleotide exchange factors
(GEFs), RasGRFs (26–29) and RasGRPs (30–36), the latter
also being known as CalDAG-GEFs, are modulated by increases
in [Ca2!]i. For RasGRFs, this modulation occurs indirectly
through association with Ca2!!calmodulin, whereas for Ras-
GRPs, a more direct control is achieved through association of
Ca2! with atypical EF hands (25). In addition to stimulating Ras
activation, increases in [Ca2!]i also mediate Ras inactivation
through the Ca2!-triggered RasGTPase-activating proteins
(RasGAPs) RASAL and CAPRI (19, 37). These proteins are
cytosolic, inactive RasGAPs that, upon a receptor-mediated
elevation in [Ca2!]i, undergo a rapid, C2 domain-dependent
association with the plasma membrane, an association that leads
to an increase in their RasGAP activity (19, 37). Unlike CAPRI,
which undergoes a transient association with the plasma mem-
brane and does not sense receptor-mediated Ca2! oscillations,
the plasma membrane association of RASAL occurs in an
oscillatory manner (19). This oscillatory association occurs in
synchrony with underlying receptor-mediated Ca2! oscillations
and is frequency-modulated such that, upon increasing the
amplitude of receptor stimuli, the frequency of RASAL mem-
brane association is enhanced (19). CAPRI and RASAL there-
fore constitute molecular entities that can sense the amplitude
and frequency, respectively, of complex Ca2! signals, decoding
these distinct temporal signals through a modulation of plasma-
membrane-associated Ras.

The characterization of such distinct Ca2! sensors, tuned to
detect different temporal Ca2! signals, has raised the issue of
whether the temporal dynamics of receptor-mediated Ca2!

oscillations are optimized for efficient Ca2!-mediated activation
of Ras and downstream Ras-dependent signaling (25, 38). Here,
we have addressed this issue, presenting data showing that the
temporal dynamics of Ca2! signals are indeed optimized for
activation of Ras and the downstream extracellular signal-
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Abbreviations: [Ca2!]i, concentration of intracellular free calcium; EGF, epithelial growth
factor; ERK, extracellular signal-regulated kinase; MAPK, mitogen-activated protein
kinase.
‡ To whom correspondence should be addressed. E-mail: pete.cullen@bris.ac.uk.

© 2005 by The National Academy of Sciences of the USA

www.pnas.org!cgi!doi!10.1073!pnas.0409611102 PNAS " May 24, 2005 " vol. 102 " no. 21 " 7577–7582

CE
LL

BI
O

LO
G

Y

HRas-MAPK pathway

Increase of frequency



The H-Ras-MAPK pathway is not regulated by the 
amount (concentration) of absolute Cai released 

(amplitude) 
BUT 

by the frequency of the oscillations (time flow) 

An emergent property that directly regulates  
a biological function 

It is not the function of a single molecule that 
regulates.  

Instead, the ensemble of interacting 
molecules, appropriately combined, generates 

circuits generating emergent functions.



Dynamic analysis of molecular networks

RhoA PLD1

RhoA PLD1Activation

[RhoA] + [PLD1] [RhoA-PLD1]
Kf

Kb

Information about:
1. binary physical interaction
2. formation of sufficiently stable complex allowing PLD1 activation
3. reversibility and shut-off of PLD1 activity
4. kinetic constants governing the reaction equilibrium



Set of differential equations, etc.

Software implementation of equation sets

Computer simulation of cell molecular dynamics

Identification and analysis of “emergent properties”: 
oscillators, by-stability, feedbacks, etc.

[RhoA] + [PLD1] [RhoA-PLD1]
Kf

Kb



V0 = 
Vmax [S]
KM + [S]

Michaelis-Menten Equation 

[RhoA] + [PLD1] [RhoA-PLD1]
Kf

Kb



3 special cases [RhoA] + [PLD1] [RhoA-PLD1]
Kf

Kb

[BTK] + [PLCbeta1] + [ATP] [BTK]
Kf

Kb
phospho_PLCbeta1+ + [ADP]



(3)

[PLCbeta1] + [PIP2]
Kf

Kb
+[PLCbeta1-PIP2] [PLCbeta1] [DAG] [IP3]+

Kf

To dynamically model molecular networks we need to know
the quantitative parameters governing biochemical reactions

under physiological conditions!



http://www.brenda-enzymes.info/index.php4

BRENDA: a data-base of enzymatic 
kinetics data

http://www.brenda-enzymes.info/index.php4


In chemistry, and more in general in systems theory, the steady 

state of a system or a process (such as a biochemical reaction) 

occurs when the variables (for instance an enzyme Km) defining the 

process kinetics do not change over time. 

In a context of continuous or discrete time (continuous or discrete 

kinetics) this implies that variables are always identical (constant) 

with respect to time 0



The problem of the “starting conditions”:

which 'the starting point? The zero state?

It is generally assumed that the system is 
modelled at steady state (kinetics 

equilibrium)

CAUTION:
The cell is not alive when I say so (at the 

time of observation)!
It is just an “obligated” assumption!

Notably: metabolism normally works at 
steady state; signal transduction not 

necessarily!
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Emergent Properties of
Networks of Biological
Signaling Pathways
Upinder S. Bhalla and Ravi Iyengar*

Many distinct signaling pathways allow the cell to receive, process, and respond
to information. Often, components of different pathways interact, resulting in
signaling networks. Biochemical signaling networks were constructed with
experimentally obtained constants and analyzed by computational methods to
understand their role in complex biological processes. These networks exhibit
emergent properties such as integration of signals across multiple time scales,
generation of distinct outputs depending on input strength and duration, and
self-sustaining feedback loops. Feedback can result in bistable behavior with
discrete steady-state activities, well-defined input thresholds for transition
between states and prolonged signal output, and signal modulation in response
to transient stimuli. These properties of signaling networks raise the possibility
that information for “learned behavior” of biological systems may be stored
within intracellular biochemical reactions that comprise signaling pathways.

Studies on the cyclic adenosine monophos-
phate (cAMP) signaling pathway led to the
identification of several general mechanisms
of signal transfer, such as regulation by pro-
tein-protein interactions, protein phosphoryl-
ation, regulation of enzymatic activity, pro-
duction of second messengers, and cell sur-
face signal transduction systems (1). These
mechanisms of signal transfer have subse-
quently been shown to occur in many path-

ways, including Ca2' signaling pathways (2),
tyrosine kinase pathways (3), and other pro-
tein kinase cascades, and recently in the in-
tracellular protease cascades in apoptosis (4).
Initially, signaling pathways were studied in
a linear fashion, and it was shown that many
important biological effects are obtained
through linear information transfer. However,
it has become increasingly clear that signal-
ing pathways interact with one another and
the final biological response is shaped by
interaction between pathways. These interac-
tions result in networks that are quite com-
plex and may have properties that are nonin-
tuitive. A systematic analysis of interactions
between signaling pathways could be useful
in understanding the properties of these net-
works. We developed models for simple net-

works consisting of up to four signaling path-
ways to determine if the network has proper-
ties that the individual pathways do not and if
networking results in persistent activation of
protein kinases after transient stimulus. Per-
sistent activation of protein kinases is a gen-
eral mechanism for eliciting biological ef-
fects. Cholera toxin continuously elevates
cAMP, resulting in persistent activation of
protein kinase A (PKA), inhibition of intes-
tinal water reabsorption, and diarrhea, key
pathological manifestations of cholera (5).
Since this original demonstration, persistent
activation of protein kinases has been impli-
cated in diverse processes such as neoplastic
transformation (6) and learning and memory
(7). Although mutations or altered gene ex-
pression can result in persistent activation of
protein kinases, we wished to ask the follow-
ing question: Do connections between preex-
isting signaling pathways result in persistent-
ly activated protein kinases capable of elicit-
ing end-point biological effects?

To develop models of signaling pathways,
it is necessary to consider the mechanisms by
which signal transfer occurs. In biological
systems, signal transmission occurs mostly
through two mechanisms: (i) protein-protein
interactions and enzymatic reactions such as
protein phosphorylation and dephosphoryl-
ation (ii) or protein degradation or production
of intracellular messengers. In an approach
that would include all of these reactions, we
used the basic chemical reaction schemes of

A ! B
kf

º
kb

AB (1)

A ! B
kf

º
kb

C ! D (2)
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Signal transduction networks

The issue: kinetic modelling at balancing











Emergent properties: molecular oscillators





Emergent Properties of Networks of Biological 

Signaling Pathways 

Upinder S. Bhalla and Ravi Iyengar* 

SCIENCE VOL 283 15 JANUARY 1999 

Many  distinct  signaling  pathways  allow  the  cell  to  receive,  process,  and  respond  to 

information.  Often,  components  of  different  pathways  interact,  resulting  in  signaling 

networks. Biochemical signaling networks were constructed with experimentally obtained 

constants  and analyzed by computational  methods to understand their  role in complex 

biological processes. These networks exhibit emergent properties such as integration 

of signals across multiple time scales,  generation of distinct outputs depending on 
input strength and duration, and self-sustaining feedback loops. Feedback can result 

in bistable behaviour with discrete steady-state activities, well-defined input thresholds 

for  transition  between  states  and  prolonged  signal  output,  and  signal  modulation  in 

response to transient stimuli. These properties of signaling networks raise the possibility 

that  information  for  “learned  behaviour”  of  biological  systems  may  be  stored  within 

intracellular biochemical reactions that comprise signaling pathways. 

Signaling networks can “memorise” (store) 
information coming from extracellular stimuli by 

means of self-assembly of dynamic molecular circuits 
spontaneously generating emergent properties 

(bistability)!



Hysteresis meets the cell cycle
Mark J. Solomon*
Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, C123 SHM, New Haven, CT 06520-8024

What, you may well ask, does
hysteresis have to do with
cell cycle progression? The
last time most of us heard

about hysteresis was in the context of
the ferromagnetism that underlies tape
players and floppy drives. In general,
hysteresis means that it takes more of
something to push a system from state
A to state B than it does to keep the
system in state B. Sha et al. (1) report in
this issue of PNAS that the cell cycle of
Xenopus egg extracts exhibits hysteresis
in that the amount of cyclin needed to
induce entry into mitosis is larger than
the amount of cyclin needed to hold the
extract in mitosis. This effect creates a
nice bistable system with a ratchet to
prevent slipping back from mitosis to
interphase. This work also represents an
excellent marriage of theory and experi-
ment from the labs of John Tyson and
Jill Sible, respectively, at Virginia Poly-
technic Institute in Blacksburg. Some
background, both experimental and the-
oretical, is necessary before discussing
the importance of the current findings.

The eukaryotic cell cycle is driven by
sequential activation and inactivation of
cyclin-dependent protein kinases
(CDKs) (2, 3). The CDK for entry into
mitosis is Cdc2. Cdc2 activation requires
binding to a regulatory protein (cyclin
B) and activating phosphorylation (car-
ried out by CDK-activating kinases, or
CAKs). Even in the presence of cyclin
and activating phosphorylation, Cdc2
can be inactivated by inhibitory phos-
phorylations (carried out by the Wee1
and Myt1 protein kinases). Inhibitory
phosphorylations are removed by the
Cdc25 protein phosphatases, which are
the immediate triggers for entry into
mitosis. CDKs regulating other cell cycle
transitions can in addition be inhibited
by direct binding of inhibitory proteins.
Mitotic cyclins are subject to ubiquitin-
mediated degradation at the end of mi-
tosis by the action of the anaphase-
promoting complex (APC; an E3, or
ubiquitin ligase, of the ubiquitin system).
Extremely important to the proper func-
tioning of the cell cycle are checkpoints
that ensure that key cell cycle events are
not initiated until prior steps are com-
pleted. For example, a DNA replication
checkpoint prevents Cdc2 activation un-
til DNA replication is complete and the
spindle assembly checkpoint prevents
cyclin degradation via the APC until all
chromosomes are properly aligned on
the metaphase plate.

Many important advances in under-
standing entry into and exit from mito-
sis have come from biochemical studies
of Xenopus egg extracts (2). This ‘‘sim-
ple’’ system is obtained by crushing frog
eggs in the presence of minimal
amounts of buffer. These extracts can
undergo multiple rapid cell cycles, moni-
tored either by the morphology of
added nuclei or by assays of Cdc2 activ-
ity. These cell cycles can be driven by

the endogenous synthesis and degrada-
tion of cyclin, or, if protein synthesis is
inhibited, by the addition and subse-
quent degradation of exogenous cyclin.
This system is probably the closest we
can come to having the biochemist’s
ideal: a homogeneous bag of enzymes
performing a complex task. The lack of
checkpoints (unless one performs spe-
cial tricks) and nonessential features one
associates with more complex cell cycles
in tissue culture (such as the need for
nuclei, microtubules, subcompartments,
DNA, etc.) allows the fundamental cell
cycle oscillator to be studied in relative
isolation. This system also exhibits con-
served features of eukaryotic cell cycles:
feedback loops. Thus, the rates of inhib-
itory phosphorylation of Cdc2 (mediat-
ed by Wee1 and Myt1) are decreased
and the rates of dephosphorylation of
these sites (mediated by Cdc25 proteins)
are increased at the transition into mito-
sis (4). A second critical feedback is that
cyclin synthesis, by inducing entry into
mitosis and consequent activation of the
anaphase-promoting complex, also leads
to its own destruction. From these com-
ponents and this basic wiring diagram
one can hand wave one’s way through
the interphase-to-mitosis transition. But
do we really understand this process?
That’s where mathematical modeling
comes in.

There are many reasons to model a
complex process quantitatively. It can be
reassuring to plug the complete set of

enzyme and substrate concentrations
and their respective kinetic properties
into a set of equations and have one’s
favorite process pop out. But that
doesn’t happen until you already know
everything. More useful is modeling
when significant ignorance remains so
that the act of modeling points to im-
portant gaps to be filled or suggests in-
teresting behavioral aspects of the sys-
tem that can be tested. That’s the goal
John Tyson and collaborators have tack-
led for over a decade. Most of this work
was done in collaboration with Bela No-
vak (Budapest University of Technology
and Economics) who brought his experi-
mental experience studying the Schizo-
saccharomyces pombe cell cycle. Their
first joint effort was a model of the ba-
sic cell cycle in Xenopus egg extracts (5).
The underlying logical approach was
remarkably straightforward: Compile a
large set of conceptually simple differ-
ential equations describing the rate of
change of given components (say cyclin
concentration or Cdc2 with inhibitory
phosphorylations) and let a computer
sort out the resulting complex web of
interrelationships. What resulted was a
good description of the state of knowl-
edge at the time. Many models could do
that, however, because the degrees of
freedom are unbounded. However, what
also came out of the simulations were
some nonintuitive predictions not made
by other published models. The key one
tested in the Sha et al. article (1) was
that the system would display hysteresis,
thereby explaining its bistability: two
stable states, interphase and mitosis.

The approach to testing this predic-
tion is at once elegant and technically
tricky. What is needed are accurate
measurements of how much cyclin it
takes to push an egg extract into mitosis
and how much it takes to hold it there.
The first measurement is easy: Just de-
termine how much of a nondegradable
cyclin needs to be added to an extract in
interphase lacking any endogenous cy-
clin to induce entry into mitosis. The
second measurement is more compli-
cated because the determination of how
much cyclin is needed to maintain mito-
sis requires that some of the cyclin that
was necessary to get you into mitosis in
the first place be removed. The solution
was, essentially, to use a mixture of de-

See companion article on page 975.

*E-mail: Mark.Solomon@Yale.edu.

This effect creates
a bistable system with

a ratchet to prevent
slipping back
to interphase.
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Hysteresis drives cell-cycle transitions in Xenopus
laevis egg extracts
Wei Sha*, Jonathan Moore† , Katherine Chen*, Antonio D. Lassaletta*, Chung-Seon Yi*, John J. Tyson*,
and Jill C. Sible*‡

*Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406; and †Cancer Research UK London Research
Institute, Clare Hall Labs, South Mimms, Herts, EN6 3LD, United Kingdom
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Cells progressing through the cell cycle must commit irreversibly to
mitosis without slipping back to interphase before properly seg-
regating their chromosomes. A mathematical model of cell-cycle
progression in cell-free egg extracts from frog predicts that irre-
versible transitions into and out of mitosis are driven by hysteresis
in the molecular control system. Hysteresis refers to toggle-like
switching behavior in a dynamical system. In the mathematical
model, the toggle switch is created by positive feedback in the
phosphorylation reactions controlling the activity of Cdc2, a pro-
tein kinase bound to its regulatory subunit, cyclin B. To determine
whether hysteresis underlies entry into and exit from mitosis in
cell-free egg extracts, we tested three predictions of the Novak–
Tyson model. (i) The minimal concentration of cyclin B necessary to
drive an interphase extract into mitosis is distinctly higher than the
minimal concentration necessary to hold a mitotic extract in mito-
sis, evidence for hysteresis. (ii) Unreplicated DNA elevates the
cyclin threshold for Cdc2 activation, indication that checkpoints
operate by enlarging the hysteresis loop. (iii) A dramatic ‘‘slowing
down’’ in the rate of Cdc2 activation is detected at concentrations
of cyclin B marginally above the activation threshold. All three
predictions were validated. These observations confirm hysteresis
as the driving force for cell-cycle transitions into and out of mitosis.

The biochemical oscillations that characterize early cell cycles
of South African clawed frog, Xenopus laevis, can be recon-

stituted in cell-free egg extracts (1, 2). In this system, newly
synthesized cyclin B associates with the cyclin-dependent kinase
(Cdk) Cdc2 (3, 4). (Cyclin B!Cdc2 dimers are referred to as
M-phase promoting factor.) Cyclin B!Cdc2 is rapidly inhibited
by phosphorylation of Cdc2 on tyrosine 15 by two kinases, Wee1
and Myt1 (5, 6). Cdc2 remains inactive until this phosphate
group is removed by the phosphatase, Cdc25 (7, 8). In turn,
active Cdc2 phosphorylates and inhibits Wee1 (9) and phos-
phorylates and activates Cdc25 (10, 11). These positive feedback
loops are responsible for the abrupt activation of cyclin B!Cdc2
at the G2!M transition. Also important to this control system is
a negative feedback loop in which active Cdc2 indirectly activates
Fizzy, a protein that targets cyclin B for degradation via the
ubiquitin–proteasome pathway (12, 13). Entry into mitosis is
triggered by synthesis of cyclin B (1, 4), and exit from mitosis is
triggered by degradation of cyclin B (14–16).

The cell cycle of frog egg extracts was selected as the first case
for building a comprehensive mathematical model of the cell-
cycle engine (17) because egg extracts contain the simplest
functional control system for activation of the Cdks that drive
cell-cycle transitions. The Novak–Tyson equations model this
network of interlocking positive and negative feedback loops. In
the model, the positive feedback loops create alternative states
of low and high Cdc2 activity (interphase and M phase, respec-
tively), and the negative feedback loop drives the control system
back and forth between these states (Fig. 1a). During interphase,
Cdc2 activity is low (because Cdc2 is phosphorylated), the rate
of cyclin synthesis exceeds the rate of cyclin degradation, and
cyclin accumulates in the extract. When total cyclin concentra-
tion exceeds an activation threshold (Fig. 1a), Cdc2 is abruptly

activated by removal of the inhibitory phosphate groups. Be-
cause Cdc2 activates cyclin proteolysis, the rate of cyclin deg-
radation in M phase exceeds its rate of synthesis, and cyclin
concentration falls. However, according to the model, the extract
stays in the ‘‘activated state’’ (unphosphorylated Cdc2 and rapid
cyclin degradation) until Cdc2 activity falls below an inactivation
threshold (Fig. 1a), when Cdc2 is abruptly inactivated by tyrosine
phosphorylation. This cycle of events is called a hysteresis loop.
Hysteresis underlies behaviors like ferromagnetism and DNA
melting!reannealing. In both cases, the value of a control
parameter (magnetic field, temperature) that induces a transi-
tion from one state to another is quite different from the value
needed to induce the reverse transition.

Hysteretic transitions are discontinuous. Once the system has
been switched on by moving the control parameter across the
activation threshold, it cannot be switched off by bringing the
control parameter back across the activation threshold in
the opposite direction. Nonhysteretic switches behave differ-
ently, switching on and off at the same value. A reversible Cdc2
switch would look like Fig. 1b.

Although several authors have suggested that progress
through the cell cycle is governed by a hysteresis loop like Fig.
1a (17, 20–23), there is another theoretically plausible explana-
tion for switch-like behavior at mitosis. Periodic cyclin degra-
dation could be driven by a time-delayed negative feedback loop
involving Cdc2 activation of Fizzy, without participation from
Wee1 and Cdc25. Such a model was proposed by Goldbeter (19)
and is consistent with a nonhysteretic switch (Fig. 1b). The
distinction between these two pictures had not been investigated
experimentally until now.

Cyclin thresholds for entry into or exit from mitosis have been
measured experimentally. Solomon et al. (4) demonstrated that
there is a cyclin threshold for Cdc2 activation at mitosis 1 in frog
egg extracts. Subsequently, Holloway et al. (15) and Stemmann
et al. (16) demonstrated a cyclin threshold for exit from mitosis.
All of these experiments are consistent with either Fig. 1 a or b.
In this study, we measure the thresholds for Cdc2 activation and
inactivation going into and out of the same mitosis to distinguish
between the mechanisms proposed in Fig. 1a (hysteretic) and
Fig. 1b (nonhysteretic).

Another distinction between Fig. 1 a and b is that, in the case
of hysteresis, the underlying dynamical system is bistable. That
is, for certain fixed values of the control parameter, the govern-
ing dynamical equations admit two different stable steady-state
solutions separated by an unstable steady state (Fig. 1a). (Stable
and unstable steady states are illustrated by a ball rolling on an
undulating landscape. At the bottom of any pit !, the ball is in
a stable steady state, whereas, if balanced at the top of a hill ",

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: Cdk, cyclin-dependent kinase; !cyclin B, recombinant, nondegradable hu-
man cyclin B; CSF, cytostatic factor; CHX, cycloheximide; APH, aphidicolin.

See commentary on page 771.
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Emergent properties in cell cycle: Hysteresis



Hysteresis is a complex system property characterised by a delayed 
reaction to an applied stress in dependence on the previous state.

System hysteresis is represented on a graph as a function of the stimulus, 
with a characteristic closed curve. In presence of hysteresis, it is obtained a 
doubling of the curve: if traversed from left to right there is a path, if traversed in 
the reverse direction an opposite path is obtained. Often two horizontal sections 
are obtained: one upper and one lower, which represent the saturation limits. 
The amplitude of the closed curve is the entity of hysteresis. In a system without 
hysteresis curves just generate a single line (no-loop kinetics).



In medicine hysteresis is the programmed delay in heart 

pacemakers to avoid interference with the proper 

activity of the sinoatrial node.



Cell cycle



Cell cycle is controlled by hysteresis at the level of ciclins

The relative delay in gene expression of different cyclins 
determines the necessary delay to maintain the right 

dynamics (12-14 hours) of cells cycle. 





3- 
Free NF-kB translocates to 

the nucleus, activating 
genes, including IkBs. IkBs 

are synthesised at a 
steady rate, allowing for 

complex temporal control 
of NF-kB activation 
involving a negative 

feedback.

The IkB–NF-kB signaling module.

1-
NF-kB is held inactive 

in the cytoplasm by three 
IkB isoforms.

2- 
Cell stimulation activates 
the IKK complex, leading 
to phosphorylation and 

degradation of IkB 
proteins. 



Gene expression timing



The IkB–NF-kB Signaling Module: Temporal Control and Selective Gene 
Activation

Alexander Hoffmann, 1 * Andre Levchenko, 2 * Martin L. Scott, 3 † David Baltimore 1 ‡

Nuclear localization of the transcriptional activator NF-kB (nuclear factor kB) is 
controlled in mammalian cells by three isoforms of NF-kB inhibitor protein: IkB, 
α-, β- and -ε. Based on simplifying reductions of the IkB–NF-kB signaling module 
in knockout cell lines, we present a computational model that describes the 
temporal control of NF-kB activation by the coordinated degradation and 
synthesis of IkB proteins. The model demonstrates that IkB α is responsible for 
strong negative feedback that allows for a fast turn-off of the NF-kB response, 
whereas IkB α- and -ε function to reduce the system’s oscillatory potential 
and stabilize NF-kB responses during longer stimulations. Bimodal signal-
processing characteristics with respect to stimulus duration are revealed 
by the model and are shown to generate specificity in gene expression.



Overall conclusion

To generate dynamic models of biological networks it is mandatory to be able to:

1- reconstruct the network architecture

2- to know all  kinetics parameters, including kinetic constants, reactant concentration, 
intracellular localisation-diffusion and time-frame state evolution

3- to decide whether to apply a continuous (differential equation) versus discrete model

4- a good …. software allowing time-evolution computation

5- possibly an expected phenomenological output  (e.g. gene expression) to correlate
the network emergent behaviour to cell events



(9) 
Technologies in Systems Biology:  

the high-performance technologies (high 
throughput technologies)

Thousands to millions of context-specific variations! 



To cope with the enormous space of 
molecular variability occurring in the organisms 
we need powerful, yet cost efficient, innovative 

technologies

The experimental high-performance technologies 

(high-throughput screening (HTS)) are a set of 

advanced technologies that allow running thousands 

or mi l l ions of exper imenta l quant i f icat ions 

simultaneously.



Genomics

Proteomics

Metabolomics

“Omics” technologies



HTSs are based on the use of robotic 

technologies, h ighly min iatur ised and 

automated, producing enormous amounts of 

experimental data regarding the molecular state 

of a biological sample, at the genomic, 

proteomic and / or metabolomic level.



HTS-based analysis must, therefore, always be 

associated with powerful bioinformatics and 

computational analysis tools in order to 

reconstruct and analyse the molecular network and 

mechanisms that control biological phenomena. 

Notably: 

The HTS are propadeutic to systems biology.



“Omics” technologies flow-chart



Gene microarray analysis flow-chart



Microarrays (DNA, proteins)

An array ia a combination of related 
components arranged in a 

predetermined order



TRANSCRIPTOMICS 
La generazione di profili di espressione del RNA messaggero di una cellula (in vari 
stadi dello sviluppo o in varie condizioni fisio-patologiche) 
• ESPERIMENTI CON MICROARRAY 

• ARRAYEXPRESS e MIANE: Un database ed uno standard per gli esperimenti di 
microarray http://www.ebi.ac.uk/Databases/microarray.html 

DNA 
microarrays
Generation of mRNA expression profiles of a specific cell 

to generate context-specific gene expression data



DNA microarray

cDNA microarray 

probes generated before glass binding/adsorption) 
probe length: 200-400 mer
probes spotted upon generation

Oligonucleotide microarray

probes generated directly on glass -> in situ-synthesis
short probes: 20-40 mer (Affimetrix GeneChip)
long probes: 60 mer /Agilent)



cDNA microarray

cellule trattate cellule non trattate 

cDNA Cy3 Cy5 

RNA 

1) Estrazione dell�RNA totale dai campioni 

RNA 

2) Isolamento dell� mRNA, 
retrotrascrizione in cDNA e marcatura 
con fluorofori 

cDNA Cy3 Cy5 

3) Ibridizzazione 

4) Scansione del vertino 

1- Total RNA extraction
2- mRNA isolation and 
reverse transcription to cDNA
3- Fluorescente labelling
4- Ibridization
5- Glass scanning

Treated cells Un-treated cells



Oligonucleotide microarray



cDNA 
microarray

Oligonucleotide
mircorray

Generation of mRNA 
expression profiles: 

two
different approaches



Scansione del vetrino Glass laser scanning with two excitation wavelengths (635 and 532 nm) 
16 bit image codification (65536 color levels)







Heat map





PROTEOMICS 
• collezioni di sequenze di proteine di un organismo (proteoma) e loro analisi 
• determinazione della struttura 3D delle proteine (cristallografia e raggi X, NMR) 
• predizione della struttura di proteine di cui sia nota solo la sequenza 

PDB: database di strutture di proteine 

http://www.rcsb.org/pdb/ 
 



Proteomics is the large-scale study of proteins.  

The term proteomics was coined in 1997 in analogy 
with genomics, the study of the genome.  

The word proteome is a fusion term of protein and 
genome, and was coined by Marc Wilkins in 1994 
while working on the concept as a PhD student. 

The proteome is the entire set of proteins, produced 
or modified by an organism or system. This varies 
with time and distinct requirements, or stresses, that 
a cell or organism undergoes. 

Proteomics



Proteomics is an interdisciplinary domain that has 
benefited greatly from the genetic information of the 
Human Genome Project. 

It is mainly focused on the exploration of cell 
proteomes from the overall level of intracellular 
protein composition, structure, and its own unique 
activity patterns and functions.  

It is an important component of functional 
genomics. 

While proteomics generally refers to the large-scale 
experimental analysis of proteins, the term it is often 
more specifically used for protein purification and 
mass spectrometry (Mass-Spec)



Proteomic analysis flow-chart

Peptide detection
2D - PAGE 

(iso-electric-focusing)



Mass-Spec



• separazione di proteine in base a caratteristiche chimico-fisiche (massa, PH) 

http://www.lecb.ncifcrf.gov/flicker/ 
 
 
 
 
 
 
 
 
 
• interazioni proteina-proteina, proteina-acidi nucleici, proteina-metaboliti 



Upstream 
activating 
sequence 

2-step selection
in deficient media

Detection of  Protein-Protein Interaction by 
Yeast two-hybrid system

The overall idea is to be able to identify PPIs in a permissive, 
enzymatically defective, eukaryotic cell, such as YEAST, and 
capable of surviving and duplicating in selective medium only if a 
transcription initiation complex for a specific enzyme is 
reconstituted upon interaction between a bait protein domain and 
fish protein domain. Yeast cells are transfected with the bait protein 
of interest, for which interactors have to be discovered, and with a 
library of many fish proteins, all potential interactors for the bait. 
When the PPI complex is generated, the transcription initiation 
complex trigger the transcription of a gene leading to expression of 
enzyme allowing survival in media lacking of histidine. 

Thus, only when the PPI interaction is established, cells can 
survive and generate clones. Clones are, then, plasmid sequenced 
to identify the fish. The identified fish is a ligand for the bait of 
interest.





Dimension of human protein interactome (PPI)

~ 24000 proteine 
(da ORFs) 

~ 650000 
interazioni binarie

Estimating the size of the human interactome
Michael P. H. Stumpf†‡§, Thomas Thorne†, Eric de Silva†, Ronald Stewart†, Hyeong Jun An¶, Michael Lappe¶,
and Carsten Wiuf§!

†Division of Molecular Biosciences, Imperial College London, Wolfson Building, London SW7 2AZ, United Kingdom; ‡Institute of Mathematical Sciences,
Imperial College London, London SW7 2AZ, United Kingdom; !Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; and ¶Bioinformatics
Research Center, University of Aarhus, 8000 Aarhus C, Denmark

Edited by Burton H. Singer, Princeton University, Princeton, NJ, and approved February 19, 2008 (received for review August 27, 2007)

After the completion of the human and other genome projects it
emerged that the number of genes in organisms as diverse as fruit
flies, nematodes, and humans does not reflect our perception of
their relative complexity. Here, we provide reliable evidence that
the size of protein interaction networks in different organisms
appears to correlate much better with their apparent biological
complexity. We develop a stable and powerful, yet simple, statis-
tical procedure to estimate the size of the whole network from
subnet data. This approach is then applied to a range of eukaryotic
organisms for which extensive protein interaction data have been
collected and we estimate the number of interactions in humans to
be !650,000. We find that the human interaction network is one
order of magnitude bigger than the Drosophila melanogaster
interactome and !3 times bigger than in Caenorhabditis elegans.

evolutionary systems biology " network inference "
network sampling theory " network evolution

One of the perhaps most surprising results of the genome-
sequencing projects was that the number of genes is much

lower than had been expected and is, in fact, surprisingly similar
for very different organisms (1, 2). For example, the nematode
Caenorhabditis elegans appears to have a similar number of genes
as humans, whereas rice and maize appear to have even more
genes than humans. It was then quickly suggested that the
biological complexity of organisms is not reflected merely by the
number of genes but by the number of physiologically relevant
interactions (1, 3). In addition to alternative splice variants (4),
posttranslational processes (5), and other (e.g., genetic) factors
influencing gene expression (6, 7), the structure of interactome
is one of the crucial factors underlying the complexity of biological
organisms. Here, we focus on the wealth of available protein
interaction data and demonstrate that it is possible to arrive at a
reliable statistical estimate for the size of these interaction net-
works. This approach is then used to assess the complexity of
protein interaction networks in different organisms from present
incomplete and noisy protein interaction datasets.

There are now fairly extensive protein interaction network
(PIN) datasets in a number of species, including humans (8, 9).
These have been generated by a variety of experimental tech-
niques (as well as some in silico inferences). Although these
techniques and the resulting data are (i) notoriously prone to
false positives and negatives (10, 11), and (ii) result in highly
idealized and averaged network structures (12), such interaction
datasets are increasingly turning into useful tools for the analysis
of the functional (e.g., ref. 13) and evolutionary properties (14)
of biological systems. In particular, in Saccharomyces cerevisiae
we are beginning to have a fairly complete description of the
protein interaction network that is accessible with current ex-
perimental technologies; the recent high-quality literature-
curated dataset of Reguly et al. (15) provides us with a dataset
that should be almost completely free from false positives. For
most other organisms, however, interaction data are still far from
complete and it has recently been shown that subnetworks, in
general, have qualitatively different properties from the true
network (16–18). Although the importance of network-sampling
properties had only been realized relatively recently, this aspect

of most systems biology data are increasingly being recognized
(11, 19) as important.

There are, however, some properties of the true network that
can be inferred even from subnet data, and here we show that the
total network size is one property for which this is the case.
Present protein-interaction datasets enable us to estimate the
size of the interactomes in different species by using graph
theoretical invariants. This is particularly interesting for species
where more than one experimental dataset is available. Below we
first describe a robust and very general estimator of network size
from partial network data that overcomes this problem. We then
apply it to available PIN data in a range of eukaryotic organisms.
In supporting information (SI) Text we demonstrate the power
of this approach by using extensive simulation studies.

Estimating Interactome Size
Here, we develop an approach for estimating the size of a
network from incomplete data. We will show below (and by using
extensive simulations in SI Text) that for a given species estimates
from different independent datasets—generated by different
methods such as yeast-two-hybrid and TAP tagging—yield es-
timates for the interactome size that are in excellent agreement.

We are concerned with a true network, N, which has NN nodes
and MN edges. The sets of nodes and edges are given by VN and
EN, respectively; these define the graph representation of the
true network:

GN ! "VN, EN#. [1]

We pick a subset of nodes VS ! VN and study properties of the
subgraph GS induced by the nodes in VS

GS ! "VS, ES#, [2]

where the set of edges observed in the S is a subset of the total
set of edges, ES ! EN. Our aim is to predict the number of
interactions in the true network GN based on the available data
in the subnet, GS.

We assume that the network, GN, is generated according to
some (unknown) model characterized by a parameter (vector) ",
and subsequently the observed network, GS is sampled from it.
Then

P", p"GS# ! #
GN"GS

Pp"GS"GN#P""GN#, [3]
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PPI DATA BASES
InBio Map, 
BioGRID, 
Pathway commons_hs,  
MiMI,  
BCI,  
DIP, 
HPRD, 
HumanNet, 
IntAct,  
MINT,  
PiNA,  
HiNT,  
HuRI, P 
athPPI,  
UniHI,  
ConsensusPathDB,  
OmniPath,  
PSICQUIC,  
SignaLink 2.0,  
STRING,  
STITCH,  
HIPPIE,  
HAPPI,  
MENTHA,  
SIGNOR

https://www.intomics.com/inbio/map/#home
https://thebiogrid.org
http://www.functionalnet.org/humannet/search.html
http://www.ebi.ac.uk/intact/home.xhtml
http://cpdb.molgen.mpg.de/CPDB


Protein arrays



Protein domains array and drug screening

A

B

A A

B B

Protein A

Protein B

Domain-mediated 
binary interaction

Protein (domain) array
Compound screening by means of inhibition of domain-

domain interaction
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Metabolomics is the systematic study of the unique chemical fingerprints left 
behind by specific cellular processes - specifically, the study of their metabolic  
small molecules profiles, as derived from metabolic pathways, either 
processing energy as well as mass.

The metabolome is the set of all metabolites in a biological organism 
principal = ~ 8000; total (including minor intermediates) = ~ 106.

Note that, while gene expression and proteomics data do not fully explain 
what happens in a cell, the metabolic profile may provide a snapshot of the 
ongoing physiology of the cell.

Notably, metabolic and signal transduction pathways are now 
considered strongly connected.

One of the challenges of systems biology is to integrate genomics, 
proteomics and metabolomics to have a complete overview of living 
organisms.

Metabolomics



Metabolomics analysis
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Metabolism 

LTA4H
C00109

C03287

C00427

C00639

CE2020

CE0955

C05962

C00546

C00135
C00256C05272

Glutathione 
Synthetase 
Deficiency 

C00077 C00576

C00696
C02291

C00719C01419

Fatty Acid 
Biosynthesis 

C01571
C02712

C00785

CE2056

C00213

MPST
C05829

C06006 CE5304
SLC25A20

CE5645

C00155C00134
C02232

C00750

Spermidine and 
Spermine 

Biosynthesis C05729

C02320

CE5875

C01026

C00073

C03345 OLAH

Beta Oxidation of 
Very Long Chain 

Fatty Acids 

Oxidation of 
Branched Chain Fatty 

Acids 

CPT2

2-Oxobutanoate 
Degradation 

C05125
Malate-Aspartate 

Shuttle 

C00014C03245

C00026
C00024

Fatty acid Metabolism

AGXT

Alanine Metabolism
C05265

C05260

Cysteine Metabolism

C00246
Carnitine SynthesisC00040 C00318

Lysinuric Protein 
Intolerance 

C01944

C05263

C00003

C03406

C00042

Hypoacetylaspartia

C00022

MAT2A

Glucose-Alanine 
Cycle 

C00440

C00127

C00025
C00062

Phytanic Acid 
Peroxisomal 

Oxidation 

Fatty Acid Elongation 
In Mitochondria MTHFR

C00153C05330

Citrullinemia Type I
C05264

C00143

CE1186
C00669

ASS1
Methionine 
Metabolism 

D-Arginine and 
D-Ornithine 
Metabolism 

C00472 Glutathione 
Metabolism 

CE6584

Glycine, Serine and 
Threonine 

Metabolism 
C05993

C00152 C00327

CTHC01888C00207
CBS

C00051

C00222

C00288
C00041

C05267

Betaine Metabolism

CE4799

CE4798

CE4800

CE4797

CE5966
CE5967

CE5968

CE5943

CE5942

CE4805

CE4806

CE4801

CE4803

C03239

C01644

CE4722

3-Methylglutaconic 
Aciduria Type III 

CE2061

G00009
CE2577

CE5941

CE7114
CE7110

C06439

CE6508

CE7082

CE7085

CE7079

CE7087

CE7086

CE7084

CE7115

CE7083

CE7111

C03127

Caffeine Metabolism CE2916

C05118

C16353

C07481
C16366

C07130CE4723

C16359

C13747

CE2915

C07480

CE5969

CE7113

CE7109

CE4808
CE5970

CE7112

CE5971

CE4796

C05468

CE5323 CYP46A1

C05450

C04722

C05452

C05457

C05466

C06341

CE1589
C15519

C05467

C15977

C15974C15976

C15975

3-Hydroxy-3-Methylglutaryl-CoA 
Lyase Deficiency C00671

Saccharopinuria/Hyperlysinemia 
II 

C15979
C02939

C03465
C00407

Isovaleric Aciduria

NAT2

PANK1

C05119

C02047

C01645

C00233

CE2028

CE5456

CE5797

CE5798

C07282

C07281

Ketone Body 
Metabolism 

C01136ALDH6A1
ALDH9A1

C00016

C00010

C00091

C01169

CE2102
CE4968

C05273

C03881

CE2026

C04405

C05271

C00097

Propanoate 
Metabolism 

C01089

C05270

C02593
C01832

C00170

C00310

C00894

C01181

C00986

C03221

CE0194
2-Methyl-3-Hydroxybutryl 

CoA Dehydrogenase 
Deficiency 

C00334

C00037
C00349 CE4877

CE6241

C05262

C02838 CE6502

C05381

C00141

C03561

CYP1A2

CE5936

CE5935CE2568

CE2569

CE5898
C05760CE7172

CE7054C04633

C05761

CE2567
CE3554

CE2053

CE5939

CE5828

CE5940

CE5929

G00171
CE5938

C04618

C04717C00173

C04688
CE5526

C05762

C05223

CE1937

CE1243

C07296

CE6236

C05966

CE2054

CE6474

CE5529

C03939

C05763

CE1935

C06315

C04364

CE2305

CE5920

CE2049

CE2576

CE2566

CE2306

C05744

CE6473
CE1936

C00229 CE6235
C05759

C05758

CE2565

CE5926

C01601

CE5930

CE2163

C00693

C05745

C04246

CE5931

C04570

C04253

C00390

C00399

G10598

C05805

COQ7

C05803

C05313

C05804
C05200

C01230

CE4987CE4988

Ubiquinone 
Biosynthesis 

C13425

COQ3

COQ2 C00156

C05802

G10599CE5752

CE4989

CE5775

CE5776

CE5755

CE5753

CE5754

CE5945

ATP1B3
TDO2

PTS

GGH

C02538

CYP1A1

C05924

C00201

C06194C00655

NME6

Lesch-Nyhan 
Syndrome (LNS) 

C00415

C01044

UMP Synthase 
Deiciency (Orotic 

Aciduria) 

C02953
SETD7

PNP

C01762

PDE7B

CE1754

CE1761

ATP1A4

MC2R

CE5311

TPH1

C05606

GPT2 MECR ALDH5A1 Canavan Disease
C03150

C00232

C00136
C04352

C00066

SLC25A12

4-Hydroxybutyric 
Aciduria/Succinic 

Semialdehyde 
Dehydrogenase 

Deficiency 

CE5328

AACSC02967ILVBL
MCEE

C00877

HIBADH Valine, Leucine and 
Isoleucine 

Degradation 

Short Chain Acyl CoA 
Dehydrogenase 

Deficiency (SCAD 
Deficiency) 

C00857

SOD3

CARS2

CE1310 C00819
C00160

C04748
C01962

C05842C05928

C01262MCCC2

C05116

C01144 AOC3C06142

C05944

KMO

PNPT1

C00526
POLR3GSULT1A1

C00677 PAPSS2

C13690

C00253

AOX1

MCCC1

Adenylosuccinate 
Lyase Deficiency 

C00527
NMNAT2

NUDT12

C03344Pantothenate and 
CoA Biosynthesis HSD17B10

C00061Beta-Ketothiolase 
Deficiency 

C06002 C02170
C03460C03196

C01997QPRT
C00068

C02918

C03231

C05843

C02229; C05665

FLAD1

BST1

C03492PDXP

C00864
ACSM1

C00430 BDH2

C01412

C04079 C01847

C00255

BPNT1
GABA-Transaminase 

Deficiency 
C01081

C00224

NNT

C00314

C03523

C05844

CE4804

ADO

C01639

CE5327

CE5944

C05528

CE5559

C00506

CE5318

C05929

Zellweger Syndrome

C04076

CE5531

C01921C06144

C00695

Familial 
Hypercholanemia 

(FHCA) 

Congenital Bile Acid 
Synthesis Defect 

Type II 

CYP8B1

C17335

C05465

CYP7B1

CE5325
CYP39A1

C13550AMACR

AKR1C4

AKR1D1

CE5317

Glutaric Aciduria 
Type I 

C03363
CYP11B1

C03722

Lysosomal Acid 
Lipase Deficiency 
(Wolman Disease) 

CE4995
CE1360

C05560
SUOX

CE0078

CE5138

CE5322

C05500

Hereditary 
Coproporphyria 

(HCP) 

C00931

C039903-Methylglutaconic 
Aciduria Type IV 

C02834

C04384 C03594

CE4990 ACSM2B
C00519

C04148
CE5560Vitamin B6 

Metabolism 

C00627

C00250

C00582

CSAD

CE5321

C04332

C03114

C04092
C00342

C00408

C00054

C00489

CE4993

CE5312

CE5012 CE5305

CE5575

C00840Fluvastatin Pathway
Rosuvastatin Pathway

C15816

C15915 C15808

C00458

Pravastatin Pathway

C01551

Molybdenium 
Cofactor Deficiency 

C05227 ACAT2 C00705

AMPD1

CE5308

C00286
C00740

Lovastatin Pathway

Atorvastatin Pathway

C05520C03294MTHFD1LSULT1E1

CE5956

Pamidronate Pathway
CE5823

Ibandronate Pathway

C11828

Risedronate Pathway

C11356

C00942 Gout or 
Kelley-Seegmiller 

Syndrome 
FDPS C05925

Purine Nucleoside 
Phosphorylase 

Deficiency 

C00921

C04432

C05926

Cerivastatin Pathway

UPP2

NUDT5

CE4994C00239

POLR3F

Alendronate pathway

CMPK2
C06145CE5320CE6252

Xanthine 
Dehydrogenase 

Deficiency 
(Xanthinuria) 

C05995
C05437

C00535

CE5799

CE5139
C03917

C04295

CE1356

C14497

CE1358

CE1342

CE1352

C04518

C05471

C05660

C05635C05294

C04392

IDO1

C01718

CE6579

C00132
CE1617

CE5141

CE5592

CE5140

INMT

SRD5A1C05634

C05290

C05295
C05297

C05293

C11134

Zoledronate Pathway

C03845 C05107

C11821
C00881

Acute Intermittent 
Porphyria 

HSD11B1

SC4MOL

C05647

C05103

NSDHL
CE5310

POLR3C

AK3
C00700

C00746
CE6032

CE2209
CE1918

CE7218

CE2088

C00821

C00988

C04506

C03391

C05206

C04311C05320

C04692

C03306

C04833

C01647
C03702

C07294

C03542

C04441C02031C02339

CE5747
C01972

C02415

C07295

C06697

C01756
C06409

C06410

C02557

C03636

C00266

S-Adenosylhomocysteine 
(SAH) Hydrolase 

Deficiency 

C07308
C00647

C03125
C02986

C04728

C04160

CDO1

C01134 C01013

C00882

C01188

C00018

Methylmalonic 
Aciduria 

RDH13

Taurine and 
Hypotaurine 
Metabolism C00831

C04158
C06001

VNN1

C00989

Methylmalonate 
Semialdehyde 

Dehydrogenase 
Deficiency 

C06000C05998 Phenylacetate 
Metabolism 

Methylmalonic 
Aciduria Due to 

Cobalamin-Related 
Disorders 

C03069

COQ6

C05572
C00606

C02805
C00534

C04047

C03880COQ5
CE5326

CE5946

CE6245

CE5661 G00008

CE1941

CE1943

CE1942

CE1059CE1940

C03284C01664
C01007

ACSS3 C00021
C00217 CE2089

C03078
C01642

C05983CE5588
C05665

C00019CE0469C00163
C00491

SLC6A3

Tyrosinemia Type 3 
(TYRO3) 

DCT

AANATAQP3

HTR7
Tyrosinemia Type I

Citalopram Pathway

SCNN1G
Eplerenone Pathway

C02739

C06198
PNMT

C00063
CE4890

CANT1GCH1
C02075

GGPS1

C09642
C00475

GSTZ1
C00105 TYRDHFR

C00075

C01061Etoposide Pathway
HTR4

CDA

MIF

C00055
C03013

C01036
C11251 C07292PDE10A

C00046Purine Metabolism
Folate and Pterine 

Biosynthesis 

C00130
C00058 C00672

Corticotropin 
Activation of Cortisol 

Production 

HPRT1Obesity / Metabolic 
Syndrome 

CES1

ADSS

GMPS

TK1

C00559

C00299
TYMS

ADORA2B

NCOA2
PMVK

C00044
LIPE

C01261

C00144
CPT1APAICSHMGCS1

BCAT1Methotrexate Pathway
SOAT1Excitatory Neural 

Signalling Through 
5-HTR 4 and  

Serotonin 

TYRP1

HPDALPI

RHEB
MAPK11

RAP1A

MTOR

GNB1
Vinblastine Pathway

Azathioprine Pathway

ADCY1

Vincristine Pathway

C01330

RPS6KA1
EP300

RALBP1
BAD

DDC

Intracellular 
Signalling Through 
LHCGR Receptor 

and Luteinizing 
Hormone/Choriogonadotropin 

Excitatory Neural 
Signalling Through 

5-HTR 7 and  
Serotonin 

Thioguanine Pathway

C00575

EIF4EBP1TH

RAPGEF2

PLD2 NR3C1RUVBL2

Intracellular 
Signalling Through 

Adenosine Receptor 
A2b and Adenosine EGFR

RELATOP2A
RPS6KB1

EIF4B
SOD1

BRAF
CREBBP

NCOA1

PPARGC1A
ATP1A1

TP53

ATP1B1

Intracellular 
Signalling Through 
FSH Receptor and 
Follicle Stimulating 

Hormone 

C00119

Hawkinsinuria

C03706

DBH

FAH

JUNC00035BCL2

CREB1Vasopressin 
Regulation of Water 

Homeostasis 

GNAS Intracellular 
Signalling Through 

Adenosine Receptor 
A2a and Adenosine 

ELK1

CYBAABCB1ABCC1

Paclitaxel Pathway
C11439ABCC2

AGA

C00376

CYBB

Tyrosinemia Type 2 
(or Richner-Hanhart 

syndrome) 

KHK

HTR6

C00360

ADCY2

Excitatory Neural 
Signalling Through 

5-HTR 6 and 
Serotonin 

TAT
MED1 Catecholamine 

Biosynthesis 
ABAT

One Carbon Pool By 
Folate ACADVLSLC27A2UMPS GPT

ACADM
GOT1

IDH3ARRM2BPPAT

SOD2

GNG12
Phenylalanine and 

Tyrosine Metabolism 

RRM2
APRTACP1Intracellular 

Signalling Through 
PGD2 receptor and 
Prostaglandin D2 

GCDHPRPS1L1

Vindesine Pathway
C00081PTGDRVatalanib Pathway

RAPGEF3 QDPR

C00015
Repaglinide Pathway

ABCC3

Nebivolol Pathway

C04895

C00238

C00461

CE5309
CE5626 PRKACA

PPP1CAPPP1R1ATUBA1B

KDRINSRRDH8
INS

PRKACB

NAGK

TNNT2

ABCC9

AKT1

HEXA

ESR1
CDKN1A

CHUK

UGT2B11MAP2K6

MYLK

CDC42INPP5DC00079NFKBIAMAP3K4RAC1
VEGFA

ERBB2

SHC1
GRB2

PPP1R3AMAPK1

HSP90AA1
GSK3B

HRAS

ATF2

MAP2K1
MAPK8

GALE GUCY1A2 BAX
PIK3C2A ATP5B

PKM2
PHGDH

ATP5F1

C00020
ME2

HARS
GLB1

ADORA2A

AARS
GSRARHGEF7 RPS6

C00002 NME2
UQCRC1

NFKB1

IRS2

PRKCZ

PDPK1
GUCY1B3

UGDH

C00007

PCK1

PPARG
HDAC2HLCS

SDHD

Insulin SignallingMAP3K1

TPM1

PLCB1

PAK1
GAPDHIKBKBNANS

SLC25A4SOS1
Intracellular 

Signalling Through 
Prostacyclin 

Receptor and 
Prostacyclin 

ATP5A1

GFPT1
ATP5C1TSC2
NFKB2

PRDX3
C00133Argininemia

C05379

Ethylmalonic 
Encephalopathy 

NAMPT C05266

C05268

C01042

C00937

C00455
C00183

C05259Argininosuccinic 
Aciduria 

C03508C01201

ACSL1

C00900

DBTNADK

C00438

HAGH

C00164

Methylenetetrahydrofolate 
Reductase Deficiency 

(MTHFRD) 

C01259C02055C03957

C01149

UCKL1 ECHS1C00332
C00099

BCKDHB HMGCL

SRM

C05261
ACSS1

C05269

ADC

AASS

Ornithine 
Transcarbamylase 
Deficiency (OTC 

Deficiency) 

ASPA

ALDH1L1

CE5790

HACL1C02571

C00725C05989

Hypermethioninemia

2-Hydroxyglutric 
Aciduria (D And L 

Form) 
Butyrate Metabolism CE6321PCCA

Beta-Alanine 
Metabolism DDO C05276

C02038MLYCD

AARS2CRAT

C02882C05823C01205

CE5787

C00188

C06010
C02871

C00292

C00094
C00123

ODC1

C02630

C00624

C00049
PCALAS1

C00036
C00011

MTAPC00006

GCLM

Ammonia RecyclingASRGL1

Urea Cycle
C00001 TARS

Ethanol Degradation
C00122

QARSCS

CNDP1
C00149

C00186

LHCGR
GOT2Pyruvate Metabolism

C00084 DNMT1C00227 Leigh SyndromeMARS
C00417

SDHC

MDH2

PKLRATP5E

C00282

LPL
Prednisolone Pathway

GLUL

MTHFS

C03017
Gamma-Glutamyltransferase 

Deficiency 

C00177C02554

C03011
C00012

Cystathionine 
Beta-Synthase 

Deficiency 

C03836

C02992Dihydropyrimidine 
Dehydrogenase 

Deficiency (DHPD) C14145

C06423

C02051Methionine 
Adenosyltransferase 

Deficiency 

C02147

C01326

C01755

C02679

MSRB2

CE5782

C01640

Dimethylglycine 
Dehydrogenase 

Deficiency 
C05274

C00383
CE5786

C05258

C02163CHDH
C00957

C02282

C02558

C00179

C06112

GNMT

C00311
C00402

ASL

AMT

Non Ketotic 
Hyperglycinemia ACOT12

Pyruvate 
Carboxylase 
Deficiency 

ABCD1C01336

CROT
CE5789

Glycine 
N-methyltransferase 

Deficiency 
GGT6

CE1554

C04853

CE5922

CE2011

C02165

CE5656
C01651

CE5783

C01817

C00158

Lactic Acidemia
Histidinemia NARS

GAD1 ADSL
BCKDHAACAD8 ACAT1

BBOX1ACADSB

IVD

Propionic Acidemia

C00504
HADH

PPCDC
C00027PRPS1

ACO2

ASNS PPCS
C03838

C03794
IDH3G

YARSADA

ATIC
RRM1

Degradation of 
Superoxides 

COASY
C03090

FPGSUPB1

C00212

C05543

C01029

CE1944

C00487

CE1401

CE5586
C16529C00658

C05527
C01035C02412

C05519

C08320

C00555

CARS

C00605

SMS
C01033

C02583

C03793

C02972

C00320

CE4970

PEX11G

SLC7A7

CE5791
C01242

C01585

C01429

C04188

MSRB3

ABCD2

SHMT1
OTCC00086

GCLCAspartate Metabolism
MTR

ALDH2
IL4I1

Glutamate 
Metabolism C00064

C00664

Citric Acid CycleC09332ACACADHODH
PDHBNDUFA1FTCDMTFMT

Adefovir Dipivoxil 
Pathway 

SDHB AK1

FASN
PDHA1

SDHA
GLO1

ATP5D

DLST
EPRS

CMPK1

HADHB

GART

NME1

MAOA N/A

STS
CAD

SLC2A4RXRA
RPS6KB2

FH
LHB

GUSB

DUT

GLUD1
ITPA

C00169
SARS

NNMTC00147
C00301

OGDH

ACSS2GUK1

DLAT

DLD

C00387C00295

CAT

C00429

C04823

DPYS
C00337

C00322

C02642

C06157

HSD17B4

XDH

C01258

Smith-Lemli-Opitz 
Syndrome (SLOS) 

Sulfate/Sulfite 
Metabolism 

DPYD

C01475

TPK1 C00459

C03373

C00013

PPOX

SULT2B1

Fluorouracil Pathway

C00364

C00499

C00365AICA-Ribosiduria

SQLE

C00460C00262

C00362

DHCR24

C01724 C00780 Steroid Biosynthesis

C02407
C00330

C00385

HSD17B1

WARS2
HSD17B7

LSS

C00214

C00242
MNGIE 

(Mitochondrial 
Neurogastrointestinal 

Encephalopathy) 

C00106

C00363

C05100

C05145
Beta 

Ureidopropionase 
Deficiency 

G00059

G00058

G00129
C06299

NADSYN1 C00234
ACOX2

C04734
DTYMK SLC27A5

C00059

Riboflavin MetabolismBDH1

HMGCS2

Glutaric Aciduria 
Type III 

Amiloride PathwayC03272
C01060

CE5542

G00057

C00547
CE5026C05580

CE5593

C05577
MVK C00112

C01103
C01346

Spironolactone 
Pathway 

C00822C04043
WARS

G04561

G00121

G00084

G00055
G00056

G00078
G00085

G00086

C06132

G10511

CE6227

G00120

G00079

G00119

CE5538

C00787

CE6194

C00777

CE5963
CE5589

C02515

CE2176
CE6034

C04926
C09640
Desipramine Pathway

Disulfiram Pathway

SLC6A4

SCNN1D

ATP1B2

SCNN1ATriamterene Pathway
Aromatic 

L-Aminoacid 
Decarboxylase 

Deficiency 

Capecitabine Pathway

C00361Gemcitabine Pathway

FDFT1

HMGCRIMPDH1
IDI1

Pyrimidine 
Metabolism C04376

NT5C2 C04677

TYMPC04751

AADAT
AASDHPPT

C00039
ENPP1

Lysine Degradation
C00356

Nicotinate and 
Nicotinamide 
Metabolism 

PAPSS1

Maple Syrup Urine 
Disease PIPOX

C05512CYP11A1 PCCB MUT
OXCT1 C01213 C00683 CE4969

C02430
Adenosine 
Deaminase 
Deficiency 

ASMT C02530 C00100ACAA2 C04424 C05668POMC

FXYD2

EBP

MVD
GCHFR

ATP1A3
C00294

C01678
CYP51A1

C05841C00178
HAAO

C01143C05108
CE2153

CE6369

C01382

CE2883
CE2885

CE2952

C00448
CE6259

C00235

CE2172CE5698

CE5272
C00956

C00708
RFK

C04640

C00449
CE1261

AQP2CE5547

CE1262

CE2174C05859CE2881CE2957
CE5591

Imipramine Pathway

C01829

C06350

CE5651

C02465

CE2871

CE2173 SLC6A2C04925

CE2879

CE2877
CE2869

C05581
C05582

C01179
DUOX2

Tyrosine Metabolism

TPO

DUOX1

C00544

C00355
C01161

C05587
C03758

C03541
HIBCH

Hartnup Disorder

C05930

C00248

C00047

C00445

C03479

C00386
ACADS

C00101

ACADLTranscription/Translation 
HADHA

SUCLG1

IDH3B

CTPS TMLHE

CGA

RPE

CE2072
CE1939

C02229
CE4788

C03413
C00612C02567C00315

CE5824

C01137

C01180

C00579

C00630

C00048

Primary 
Hyperoxaluria Type I 

CE7220

CE2065
SLC7A6

G00052

CE6225

G00122

G00051

CE2887

CE2956

CE1264

C04845
G00097

C00378 SCP2

C01931

C00053

AUH

GLYAT

C00603
CE0074C00341

C00353

C05109

C00067

CN0008

CE2959CE2963
CE5274

C05110

C05111

C05439 Tryptophan 
Metabolism Desmosterolosis

C01168

C01802
C00906

CYP21A2

C04051
Thiamine Metabolism

CE2313
C01189 C06212

C01780 C00078C00643

G00076

G00069

G00068

G00077

C03428

C01054
C00751

Androgen and 
Estrogen Metabolism 

C11455C00129
Fluoxetine Pathway

TM7SF2

C04885

Chondrodysplasia 
Punctata II, X Linked 
Dominant (CDPX2) 

Escitalopram Pathway

CE2196
C07453

SCNN1BATP1B4

ATP1A2

C00704

C01164

C02100

HMBS

TXNRD2

C00366
C00418

C01107
C00187LIPA

Dihydropyrimidinase 
Deficiency 

C03028CPOX

C01185

BTD

Nucleotide Sugars 
Metabolism 

KCNA5
C00096ITGA2B

C05300 C01648
KCND3

Verapamil Pathway

ALG10B
SNTB1

Flecainide Pathway

SCN5ASNTB2

UXS1PIK3C3

GYS2
DLG1

SNTA1
Nimodipine Pathway

Amlodipine Pathway

C00899
Tocainide Pathway

C02094Quinidine Pathway
C03511

Abciximab Pathway
KCNH2

Procainamide 
(Antiarrhythmic) 

Pathway 

C02863
Disopyramide 

Pathway 

CACNA2D3

C04750

G00031
C01306

CHRNB2

C02189

C04917

G00023

CE4724

SialidosisCACNA2D2

CE2917

KCNE2

CACNB1
C00043

C00611

CACNA1C
GNE C04257

Dipyridamole Pathway

KCNJ2

C02110

CE5250
CE5277

C04902

CE5618

CE5665
CE5241

CN0002
CE5239

CE5620

CN0003

Nisoldipine Pathway

Felodipine PathwayIsradipine Pathway

Nifedipine PathwayDiltiazem Pathway
Ibutilide Pathway

KCNE1

CACNB2

C00468
Docetaxel Pathway

ABCC10C04789 C00483C01674

CMAS

CE5025

G00027
CE1957

NANP
Salla 

Disease/Infantile 
Sialic Acid Storage 

Disease 

C03765

C04927
C06135

CE5276
C03410CE5740

CE5541 C04755

G00128 CE5741

UAP1
AMDHD2

Vitamin A Deficiency GNPDA1

C00270 C00140CE5627

Cilostazol Pathway

CHIT1
C11440

PDE4DAmino Sugar 
Metabolism 

Vinorelbine Pathway

Methadone Pathway
CE5629

CE4712

C05503

C04901

C01290

CHRNB4
G00035

Sialuria or French 
Type Sialuria 

CHRNA4

CE5739
CE5738

CE6188

C03405

C05301

CE2183CE5245

CE2182

C00203 KCNJ11

C04256
KCNJ8

MYL3
C00645C11061

NPL

C11133Nicotine Pathway

C06241

C01170
C06023

CE5254 CE5614

C00381

CHRNA3

CE4888

CE5545

CE6193

C00426

CN0004

C00272

C00536
C03684

C06148
C04244

HGD

Alkaptonuria

C05923

Irinotecan Pathway
C05443

C01943

Oxymorphone 
Pathway 

Hydromorphone 
Pathway 

C05234 CE6511

CE5236

Remifentanil Pathway CE5590

C05583

C05604

Codeine Pathway
Morphine Pathway

C01392
C04737

CE6203CE6202 CE5014

CE1562

G00127
G00125

C06133

G00126 C06134

C06139

CE6204

C06140

C06141

CE5313

C05589

C05579

C02839
C07470

CE2705

C05576

C03518

C01222 C00017PIP5K1A

ADCY10PRKAR1A

HK1

KCNQ1C04932
C03033

GRIN3A
C00357 C00166PTGIR

PFKFB1

SLC2A1

GBE1
MYH7GRIN2A

C00518

C00206

CALM1GRIN1

Biotin Metabolism

Biotinidase Deficiency

Intracellular 
Signalling Through 

Histamine H2 
Receptor and 

Histamine 

C06138

G00166

C04911
C04884

C06136

C04730

C05594
NOX4

C00788
CE1951

C05350

C00473

C04010
CE5536CE5544

Sufentanil PathwayHeroin Pathway
CE5546

CE1714

ABCG2
C05922C00128

C00642
SPR

TUBB1
C00951 NOX3

FSHRTOP1

C00082
FSHB

AVPR2

C00268

Fentanyl Pathway

Alfentanil Pathway

Hydrocodone 
Pathway 

C03691

Oxycodone Pathway
Carfentanil Pathway

CE6196

C01693CE5278

Aspartylglucosaminuria 
OPRM1

C05588

C11508

C05584

C05578
C04185

CE4802

C02592

C04644 C00245

C00847

ALPLPDXK

C06050
PNPO

C04604

BAAT

C00343

CYP27A1

C03721C02440

C00374

C00850

C03642

C00146
C00573

C05535 HSD3B7

C11553

3-Methylcrotonyl Coa 
Carboxylase 

Deficiency Type I 

3-Methylglutaconic 
Aciduria Type I 

THTPA

PHPT1 C01646

CE5594

C01252CE5859
C01598

UROS C05138
C01176

C05645 C01227
C05653

C02406

C05638
C05473CYP17A1

HSD17B3C04555

C00632

C05640

C01978
C01124

C00331

C05642

CE1293

C04409

CE2321

C05648

C00978

C00398

C00637
C06213

C05639CHILD Syndrome

C05651

Congenital Lipoid 
Adrenal Hyperplasia 

(CLAH) or Lipoid 
CAH 

C00762C01449
ACMSD

C01977HSD3B1

C05502
C00735

C00450

CE2152

CE1395

CE2314

C00479

CE2315

G00064
C03824

D00370
Porphyria Variegata 

(PV) 

CE5860
C00954

C01717

C00108
C03227

C05497C05488
C05501

17-Beta 
Hydroxysteroid 

Dehydrogenase III 
Deficiency 

Adrenal Hyperplasia 
Type 3 or Congenital 
Adrenal Hyperplasia 

due to 
21-hydroxylase 

Deficiency 

C05474C05489

Steroidogenesis C05499

C01167C03023
C03895

C05122C05337

Bile Acid Biosynthesis

C00585C04072

C05643 C02470
C00280

CE3140

C00328

Adrenal Hyperplasia 
Type 5 or Congenital 
Adrenal Hyperplasia 

due to 17 
Alpha-hydroxylase 

Deficiency 

C03512

C01953

CE3087

C05469C05472 C02373

CE4764

C05498

C03263
C05284

C05490

C05463

C04483

C01794
C04554

C02528Cerebrotendinous 
Xanthomatosis (CTX) 

CE5982

C10164

C02469
C00410

CE2754
CE5652

CE6226

G00063

G00102

G00073

G00075

G00082

G00083

G00072
G00081

CE2120

CE2122C02693CE2886

CE5800

CE5757

CE3136

CE5653

CE2868

G00103
CE2878

G00104

CE6205
C09209

C02700
CE6198

G00074

CE2882

C04938

C04922

G00099

C04936

G00098

G00060

G00061

CE5756

C06948

CE2960
CE2954

CE5654

CE2964CE5525

C07486

CE5976

CE2880

CE2870

CE2866

G00091

G00071

G00090

G00087

G00089
G00067

G00088

CE1349

C03681

CE1347 CE2211

CE5072

CE1350

C05479

C04042

CE1353

C03748

CE1343

C05477

CE6029

C05476

CE1278

CE1292

C05458

CE1298 CE5530

C05446

CE1279

CE5166

CE0232

CE5168

CE4872

CE4874

C05454

C05285

C01652

C04373

CE5888

C00674

C03772

C11136

C00523

C00032

C05766

C05767

C04910

C01328

CE2119

CE5899

CE2948

CE2949

G00048

G00038
G00047

G00046

CE2872

CE2876

CE2873

CE2875

CE2888

CE2884

CE2874

C06340

C05460
CE5169

C04760

C05770
C02191

C05868

CE0233

Congenital Bile Acid 
Synthesis Defect 

Type III 

CE5133
C05453

C15520
C05478

C05475
C01024

C01079

C03205
C05480 C05470

Congenital 
Erythropoietic 

Porphyria (CEP) or 
Gunther Disease 

C00936

C02667

C01051

CYP7A1C05487 C02140C05485

CE4807

CH25H CE5558
C17331

CE5324
C17333

C05464

C17336

C05445
C05447

C05451
C05444

C05448
C17337

C01301

C05455

CE6229

CE6195

CE6197

CE6228

C05864

CE1274

CE1273

CE2345

CE3038

CE1272

G10596
CE1277

G10595

CE6031

C05768 C00524

CE5165

G10597

C11135

G00042

C06131

G00040

G00045

C06130
C05769

G00043

C05860

C05861

G10526

G00005

CE2422

CE0785

CE2424

CE2417

CE2432

CE4792

CE5117

CE4790

CE2442

CE2441

CE2433

CE2440

CE1102

CE2418

CE0782

CE0849

CE2420

C05279

CE4794

CE5119

C05280

CE4823

CE4824

CE4816

CE2596

CE4828

CE4825

CE4826

CE4827

CE4786

CE6184

CE6185

C14864 C06754

CE5118

C14790

CE5120

C14789

C14804

C14803

C14869

C14862
C14863

C14865

C14857

C14858 C14039

C14859

C06755

C14805

C14806

C14800

C14801

C14802

C14040

C14788

C14868

C06790

C14866
C11148

C11150 C11149C07490

C06899

C14870

C13645

C14867 C11088

C14875

C14876

C14874

C14877

CE6219

C14873

C14871

C14872

CE7101
CE7047

CE5986

CE1924

CE5655

CE4898

CE2890

CE2858CE5643

CE6000

CE2751

CE2891

CE4754

CE4753

CE2859

CE4716

CE2862Clopidogrel PathwayC02823C02097CN0023CN0016 C03475 C00964 CE2934 CE6272

CE2095
CE3086

CN0017

CN0022

CE2947

CN0019 CN0020

CN0021
C00687

CN0018

C06453
CE2863 C03463 C02452

C08276 C02743

C00409 C02646 C03800 CE3092

C02325

C05615 C00590
C04250

C11475

CE7145

CE7144

C14153

CE7122

C01659

C00511

Ethacrynic Acid 
pathway 

Bumetanide Pathway CE5850

SLC12A1

Torsemide Pathway

Furosemide Pathway

CE3811

CE3810

CE3809

CE3808

CE3126

C03360 CE3134

C00842
C11907 C00541

C00992

P2RY12

Ticlopidine Pathway

C01836 C00419

C00512

CE6273C01586

C00521

CE7103

C00778C01003C06505C04512C04708C02308C03340 C02817 CE2958

C06526 C00431 CE1297 C00442 C00441 C02307 C03823 C03815

C00531 C07344 C03087 CE1294 C03736

CE2848 CE2846 C06487 C01609 C01612 C01620 C00490

C05139 CE2847 CE1787 C06486 C02729 C01450 CE0573CE5796 CE6164 C02128 C12455 C01368

C05140

CE6162 C02374 C01672 C02355

C11947

C11946

CE5781 CE5794 C01792C02456C03875C06506 CE2953

CE2838

CE2839

Dibucaine Pathway
Chloroprocaine 

Pathway 

Methyclothiazide 
Pathway 

Hydrochlorothiazide 
Pathway 

Chlorthalidone 
Pathway 

Trichlormethiazide 
Pathway 

C14848

C14851

C14855

CN0010

CN0014

Lidocaine (Local 
Anaesthetic) Pathway 

Prilocaine PathwayProparacaine 
Pathway 

Oxybuprocaine 
Pathway 

Levobupivacaine 
Pathway 

SCN10A
SCN1B

Bupivacaine Pathway

Mepivacaine Pathway

Benzocaine Pathway

Cocaine PathwayRopivacaine Pathway

Hydroflumethiazide 
Pathway 

Procaine Pathway

Quinethazone 
Pathway 

SLC12A3

Metolazone Pathway

Polythiazide Pathway

Chlorothiazide 
Pathway 

Indapamide Pathway

C14846
C14843

C14845

C14453

C14847C14844

C14839

C14840

C14842

C11036

Bendroflumethiazide 
Pathway 

Cyclothiazide 
Pathway 

C14841

C14860

C14861

CE2961 C01031 C01291 C03341 CE0219 C12136C09727C05887 C06099 C00215

C01097

C03785 CE2615 CHRM3

CE2962 C14180 C04675 C03943 CE4787 C11479C11409CE3122CE3123C02999Pirenzepine PathwayCE2616

C05202C05838C05890C05893C05899C00247 C00139C04196CE2154CE2164C01417C05329CE5848

C00237 C14818 C14819 CE5721 CE5718 CE5719 C01582 C00126 C00125

C02248 CE5206C01132CE2725C03161 C03193 C01045 C01025 C03246 C00662 C00667 C11482C00138 C01695 C03021 C03024 C00347 CE0812 C00302 C07293C05894 C05889 C05839 C05176CE5723 C05232 CE1950 CE2165 CE2158 C04073 C01507 C05898 C00080 C00088 C05523 C05522 C05529 C05590 C00009 CE5049 CE5921 CE5919C00890 CE5918 C02000 C01342 C01335 C01327 C01318 C01356 C00984 C06249 C06254 C06258 C00297 C00283 C00962 CE5846 C00209CE5851CE5856CE5855CE5847CE5844 C00218

CE6454

Omeprazole Pathway

ATP4B

Rabeprazole Pathway
ATP4A

Esomeprazole 
Pathway 

Pantoprazole 
Pathway 

Lansoprazole 
Pathway 

C01101

CE2750

CE5821

CE4633

C03374

C05787
C05791

C08825

C04453

C00486

C00500

C01708

C00162 CE5730

C11547

C11548

CE5822

CE4980

CE5708

C00174C00698

CE1162

CE2955

CE4881

C05711

C02512
C00226

C00071

C06114

CE5818CE5868CE5866

CE6026

CE5795

C05462 C05676

C05674

C05461

CE5013

C05449

C06459

CE5079 CE5865 CE5869 CE5827

CE6027

C11945

CE5829 CE5867

C04530

C04814

C11509

C04840

C06607
C06604

C06606

C06608

C00870

C09815

C00180

C03415

C06206

C05932

C05931

C06196 CE5016

C01345

C01344

CE5932

CE6461

CE6452

CE6453

CE6455

CE6460

CE6448

CE6445

CE6429

CE6464
CE6450

CE6465
CE6446

CE6435

CE6420

CE6432

CE6444

CE6426

CE6456

CE6457

C14785

C02617

C14798
CN0009

CN0012

CN0013

CE6459

CE6466

CE6458

CE6447

CE6441
CE6451

CE0328 CE6438

CE6423

C14792

C14787

C11714

C00829

C11713

C03012

C14783

C14786

C14791

C14784

C06205

C14793
C14799

C14797

C14854

C14556

CN0011

C14849

C07535 CN0015

C14850

C14852

C14856

C14853
CE6467

CE6463

CE6449

CE6462
C14796

C00379

C00181

C00312

C00532

C00259

C00508

C05585

C03638C00628 C00264 CE5806 C00811 C02846 C03735 CE2729 CE2726 C04212 C04141 C01228 C11525 C12144 C03494 C06055 C00868 C05713 C02727 C06178 C03692 C01416 C03418

C01293

C01256 C09820 C06103 C02670 C05985 C00194 CE5895 CE5897 CE5896 CE5005 C05637 C04726 C03557 C03530 C00924 C03798 CE1925CE7073C11131 C02637

CE5853

C02576 CE7072 CE5849

C05636 C01308 C05673 C03531 C00923 C03633 C05302 C00944C00818 C00804 C00853 CE5900 CE5903 CE5902 CE5006C12448 C01240 C06102C09819C12145 C00503 C06054 C02764 C05712 C05548 C02723 C06037CE2727 C01117 C01141 C04494 C11524C00640 C04312 CE3056 C01197 C01183 C01171 CE2728 CE5845CE7074C11924CE1928

~ 8000 main 
metabolites 

x 
~ 22000 

interactions 

BUT ~ 106 

total metabolites 
x 

Interazioni ?



http://www.metabolon.com


Microfluidics: “lab-on-chip”

A lab-on-chip is not simply a network of 
microchannels.  
It also includes other functions depending on the 
application such as pumps, valves, sensors, 
electronics, etc.  
Therefore, it can be considered as a complex 
microsystem including mechanical, electronic, fluid 
functions, etc. 
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Microfluidic circuits are characterized by fluidic channels and chambers with a
linear dimension on the order of tens to hundreds of micrometers. Components of
this size enable lab-on-a-chip technology that has much promise, for example,
in the development of point-of-care diagnostics. Micro-scale fluidic circuits also
yield practical, physical, and technological advantages for studying biological
systems, enhancing the ability of researchers to make more precise quantitative
measurements. Microfluidic technology has thus become a powerful tool in the life
science research laboratory over the past decade. Here we focus on chip-in-a-lab
applications of microfluidics and survey some examples of how small fluidic
components have provided researchers with new tools for life science research.
VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789751]

INTRODUCTION

Integrated microfluidic devices have been used in research labs for over twenty years1 and
within the last decade their use in life science research has increased dramatically in large part
because of the invention of soft lithography2 and microfluidic large scale integration.3 These
technological advances have increased the throughput of device production, improved rapid
prototyping efforts, and have enabled researchers to enhance the complexity and sophistication
of experiments that can be performed on a microfluidic chip. As a result, microfluidic technol-
ogy is beginning to realize its immense potential for research in life science and medicine.

The realm of microfluidic technology is home to a wide variety of embodiments and appli-
cations, but the motivation for its use in medicine and life science research can be reduced to
two essential themes. One reason that microfluidic solutions are desired is because the size of
the device itself is small. The other motivation to use microfluidic technology comes from the
advantages gained from the small size of individual fluidic components. The small device size
makes microfluidic technology the ideal platform for portable, point-of-care diagnostic devices.
In addition to being small, microfluidic devices can be easy to use, cheap to fabricate and
operate, require very little sample, and they can be easily disposed of. For these reasons and
more the handheld diagnostic device has been recognized as a potential killer application of
microfluidics and is the motivation for much of the research effort in microfluidic technology
development.

The commercially available glucose meter, for example, is often regarded as the archetype
for a handheld diagnostic device4 (Figure 1(a)). It is cheap ($10–$20 US), easy to operate,
provides a clear digital readout of blood glucose level, and uses disposable paper strips for sam-
ple delivery. By combining a miniature bio-sensor with a simple and passive microfluidic deliv-
ery system the glucose meter requires only a small drop of blood from a finger prick of the op-
erator. The use of paper in microfluidic device fabrication is emerging as a popular strategy
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ABSTRACT: Mechanical properties of cells have been shown to have a significant role in
disease, as in many instances cell stiffness changes when a cell is no longer healthy. We present
a high-throughput microfluidics-based approach that exploits the connection between travel
time of a cell through a narrow passage and cell stiffness. The system resolves both cell travel
time and relative cell diameter while retaining information on the cell level. We show that
stiffer cells have longer transit times than less stiff ones and that cell size significantly influences travel times. Experiments with
untreated HeLa cells and cells made compliant with latrunculin A and cytochalasin B further demonstrate that travel time is
influenced by cell stiffness, with the compliant cells having faster transit time.

Mechanical properties of living cells have been shown to
play a role in a number of physiological and pathological

processes.1 Specifically, cells often change their stiffness in disease
states including infectious diseases and cancer. For instance, red
blood cells of patients with malaria have increased stiffness,2

human epithelial pancreatic cancer cells have reduced elastic
stiffness,3 and cancerous human bladder epithelial cells are 1 order
of magnitude more deformable than healthy ones.4 A com-
prehensive review of the literature on this topic with specific
attention to cancer has been recently published.5

Mechanical characteristics of living cells can be probed with
techniques that have either very low throughput or very low
accuracy.6 Among the most accurate methods to measure cell
mechanical parameters is atomic force microscopy (AFM) in
which the tip of an atomic force microscope is used to indent
the cell membrane and measure its mechanical response. The
technique is very accurate and provides quantitative data. How-
ever, AFM measurements have extremely low throughput and
require very skilled operators.7 Another popular and elegant
method to measure cell mechanical properties is optical
tweezers,8 a system that allows applying tensile loads to single
cells. This system shares the same advantages and disadvantages
of AFM. Similar to optical tweezers but without the need for
“handles” is the optical stretcher method.9,10 A third quanti-
tative technique for evaluation of cellular mechanical properties
is micropipet aspiration.11 In this technique, a cell is aspirated
into a micropipet using a negative pressure. Displacements of
the cell membrane are recorded to infer cell mechanical pro-
perties. This approach provides fairly accurate results with
higher throughput than the two previously mentioned techni-
ques, but it is still very slow, with throughput in the order of a
few cells/hour at most. A few approaches for the quick non-
quantitative evaluation of cellular mechanical properties have
been developed. Among them, filtration of cell suspensions
through micropores has been used to evaluate the overall ability

of a cell population to deform enough to go through the filter.12

In more sophisticated systems, flowing of cells at a specified
pressure through a microfluidic device with defined channels
has been optimized to filter out and identify subpopulation of
stiffer cells.13 Alternatively, image analysis of transit times
through artificial microcapillaries has yielded information about
cell deformability.14 These approaches provide increased
throughput but generally do not take into account the cell
diameter. Recently, microfluidic systems in which cells flow
through microfabricated channels with known compliance for
the purpose of assessing cell deformability have been imple-
mented with optical analysis tools to enable further character-
ization of the cells of interest.15 These systems have particularly
been optimized for red blood cells that have very similar cell
diameters. In addition, a deformability-based cell classification
device that uses inertial microfluidics has been proposed;16 this
system offers an interesting and promising approach but cur-
rently the separation confounds the roles of cell deformability
and diameter.
Herein we describe a microfluidic chip for semiquantitative

high-throughput (up to 800 cells/min) probing of cellular
mechanical properties of a cell population. This system is based
on the observation that, for a given diameter, the travel time of
an object through a funnel with diameter smaller than the char-
acteristic diameter of the object is influenced by the stiffness of
the object of interest. Applying this to cells, we design a system
in which cells are flowed through microfluidic channels with an
appropriately designed funnel-shaped narrowing. Because cells
behave as dielectrics, at low frequencies we generate an electric
field across the microchannel constriction and investigate the
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“Omics” technologies

Systemic functional  
reconstruction of cells 

Abstraction  
(network)

Lab-on-chip

Simulation Prediction

+



ImageStream

Flux cytometry + confocal microcopy
(1000 cells/sec)



DEPArray



+ +++ --



DEPArray™ Enables Individually Organised and 
Timed Cell-Cell Interactions

Separation

Motion



DEPArray™ Enables the Isolation of Circulating 
Tumor Cells and their Molecular Analysis

ØGenome-wide detection of chromosomal 
unbalances 

ØDetection of individual cell point mutations 
(e.g. KRAS)

Codon 12 
G>T; Gly2Val

Sample CTC 
36-2

CTCs (CK-green/DAPI-blue) isolated 
with DEPArray™ from a metastatic 

breast cancer patient

CTCs isolated with 
DEPArray™ from a 

metastatic colorectal 
cancer patient
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Methods in Systems Biology:  bioinformatics

The term Bioinformatics, (Hwa Lim, late ’80s) generally indicates the 
application of computer technologies to the study of life sciences. 
More precisely it does refer to: 

"The study of information content and informational flow in the 
systems and functional processes related to biology".

A more common connotation 
Bioinformatics is the field of science in which biology and 
information technology merge into a single discipline to 
facilitate: 
- new biological discoveries from experimental data analysis 
- building new computational paradigms from the analysis of 

living systems.



Computational Biology focuses on the algorithmic aspects of 
biological problems and the efficiency of their solutions. 

DNA computing is a form of computation that uses DNA and 
molecular biology, instead of traditional computational 
technologies (silicon-based). 

Systems Biology the recently introduced approach based on 
the theory of complex systems to study biological phenomena 
from the view point of complexity and emergent properties.

Few definitions related to bioinformatics
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Bioinformatics 
milestones



Over the past 25 years we have witnessed a real explosion in the accumulation 

of massive biological experimental data 

• Started with increasingly fast biotechnology development leading to massive 

DNA sequences of cells and organisms 

• Followed by widespread modern advent of “omcis” technologies 

» Need for computers to store big data 

» Need for programs for management and big-data analysis ("deciphering")

A technology driven revolution

THE  TWO “SOULS” OF BIOINFORMATICS

DATA MANAGEMENT → DATABASE (BIG DATA)

DATA ANALYSIS → COMPUTATIONAL BIOLOGY



DATABASE: 

careful storage, organisation, indexing and maintaining of experimental biological information 

COMPUTATIONAL BIOLOGY: 

application of algorithms to perform:  

• similarity search between DNA sequences (search of functional homology) 

• search for genes (ORF) in DNA sequences (decryption) 

• search of functional motifs in DNA (eg. binding sites for transcription factors) 

• comparison between global genomes (inter-species) 

• multiple sequence alignment and phylogenetic analysis 

• analysis of protein 3D structural data (prediction of protein structure) 

• analysis of the results of microarray experiments 

• Protein-Protein interatomic data analysis  

etc. 

DATABASEs vs. COMPUTATIONAL BIOLOGY
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Methods in Systems Biology: data-bases

In informatics, the term database indicates a structured electronic 

archive that allows access and management of data (entering, 

searching, deleting and updating) by special software applications 

dedicated to them. 

  

The database is "populated" with a set of information (data) that are 

divided by topics in a logical order (tables) and then these topics are 

organised into categories (fields).



Hierarchical (represented by a tree - ’60s) 

Reticular (represented by a graph - ’60s) 

Relational (currently the most widespread, represented by tables 
and relationships between them - ’70s) 

Object (extension to the data bases of the paradigm "object 
oriented", typical of object-oriented programming - ’80s) 

Semantic (represented by a relational graph - beginning 2000).

Data-base structure



3463 web-based  
data bases 

(03-04-2017)

Bioinformatics Links Directory 
http://www.bioinformatics.ca/links_directory

https://bioinformatics.ca/links_directory/
https://bioinformatics.ca/links_directory/


http://databasecommons.org


http://pathguide.org


http://dp.univr.it/~laudanna/LCTST/styled-9/styled-30/styled-28/index.html


https://omictools.com


http://www.genenames.org

The “ID issue”

AKT1 
alias 

 AKT; PKB; RAC; PRKBA; MGC99656; PKB-ALPHA; 
RAC-ALPHA; AKT1

SYK 
alias 

FLJ25043; FLJ37489; DKFZp313N1010

http://www.genenames.org


http://biit.cs.ut.ee/gprofiler/gconvert.cgi

http://biodb.jp

ID converter web tools (8)

http://biit.cs.ut.ee/gprofiler/gconvert.cgi
http://biodb.jp


National Center for

Biotechnology Information

http://www.ncbi.nlm.nih.gov/gquery

http://www.ncbi.nlm.nih.gov/gquery


http://www.ebi.ac.uk

http://www.ebi.ac.uk


http://www.genome.jp/

http://www.ensembl.org/

http://www.pathwaycommons.org/pc/

http://harvester.fzk.de/harvester/

http://www.systems-biology.org

http://www.systemsbiology.org

http://www.pantherdb.org/

http://david.abcc.ncifcrf.gov/

http://www.genome.jp
http://www.ensembl.org
http://www.pathwaycommons.org/pc/
http://harvester.fzk.de/harvester/
http://www.systems-biology.org
http://www.systemsbiology.org
http://www.pantherdb.org
http://david.abcc.ncifcrf.gov


https://www.opentargets.org


http://www.reactome.org


http://www.hmdb.ca/

http://www.smpdb.ca/

http://csbg.cnb.csic.es/mbrole/index.jsp

http://metpa.metabolomics.ca/MetPA/faces/Home.jsp

http://scopes.biologie.hu-berlin.de/

Metabolomic data-bases

http://www.hmdb.ca
http://www.smpdb.ca
http://csbg.cnb.csic.es/mbrole/index.jsp
http://metpa.metabolomics.ca/MetPA/faces/Home.jsp
http://scopes.biologie.hu-berlin.de


Metabolomic analysis with Cytoscape 
+ Metscape

Meta-inflammoma and cancer 



http://www.geneontology.org/

The Gene Ontology (GO) is a highly STRUCTURED 
VOCABULARY, continuously growing and updated, which 
enables dynamic assignment of functional significance to all 
proteins coded and expressed by eukaryotic cells.
 
This vocabulary is defined as CONTROLLED and DYNAMIC 
since it is written and regularly maintained by a group of 
specialists in charge: the curators. The ultimate goal is to create 
a vocabulary that can be applied to all eukaryotes as information 
about genes, proteins and their functional role in the cell is 
accumulated.

http://www.geneontology.org


The Gene Ontology consortium provides controlled vocabularies of defined 
terms representing gene product properties. 


These cover three domains:


Cellular Component: the parts of a cell or its extracellular environment;


Molecular Function: the elemental activities of a gene product at the 
molecular level, such as binding or catalysis;


Biological Process: sets of molecular events with a defined beginning and 
end, pertinent to the functioning of integrated living units: cells, tissues, 
organs, and organisms.



The three Ontologies:

These terms describe a component of a cell that is part of a larger 
object, such as an sub-cellular structure (e.g. rough endoplasmic 
reticulum or nucleus) or a gene product group (e.g. ribosome, 
proteasome or a protein dimer).

Overall, it does refer to intracellular compartment 
localisation.

(1)
Cellular Component



Molecular function terms describes activities that occur at the molecular level, such as 
"catalytic activity" or "binding activity”.

GO molecular function terms represent activities rather than the entities (such as, 
molecules or complexes) that perform the actions, and do not specify where, when, or in 
what context the action takes place.

Molecular functions generally correspond to biochemical activities that can be performed 
by individual gene products, but some activities are performed by assembled complexes of 
gene products. 

Examples of broad functional terms are "catalytic activity" and "transporter activity"; 

Examples of narrower functional terms are "adenylate cyclase activity" or "Toll receptor 
binding”.

It is easy to confuse a gene product name with its molecular function; for that reason GO 
molecular functions are often appended with the word "activity".

(2) 
Molecular function



A biological process term describes a series of events accomplished 
by one or more organized assemblies of molecular functions.

Examples of broad biological process terms are "cellular physiological 
process" or "signal transduction". 

Examples of more specific terms are "pyrimidine metabolic process" or 
"alpha-glucoside transport". 

The general rule to assist in distinguishing between a biological 
process and a molecular function is that a process must have more 
than one distinct “steps”.

NOTABLY: a biological process is not equivalent to a pathway. At 
present, the GO does not try to represent the dynamics or 
dependencies that would be required to fully describe a pathway.

(3) 
Biological Process



DAG (Directed Acyclic Graph) 
The GO ontology is structured as a directed acyclic graph where each GO term has 
defined relationships to one or more other terms in the same domain, and sometimes to 
other domains.  
The GO vocabulary is designed to be species-agnostic, and includes terms applicable to 

prokaryotes and eukaryotes, and single and multicellular organisms.



In an example of GO annotation, the gene product "Cytochrome c" can 
be described:


by the Molecular Function term "oxidoreductase activity", 


by the Biological Process terms "oxidative phosphorylation" and 
"induction of cell death", and 


by the Cellular Component terms "mitochondrial matrix" and 
"mitochondrial inner membrane”.

In a context of bioinformatics analysis, these annotations can be 
considered as

“informational layers” or “dimensions”
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Methods in Systems Biology: software for Systems Biology

http://systems-biology.org/software/

http://jdesigner.sourceforge.net/Site/Welcome.html

There are hundreds of softwares dedicated to various 
applications in bioinformatics and computational biology! (Java)

http://systems-biology.org/software/
http://jdesigner.sourceforge.net/Site/Welcome.html


http://sbml.org

http://
www.cytoscape.org

http://biologicalnetworks.net/

http://sbml.org
http://www.cytoscape.org
http://www.cytoscape.org
http://biologicalnetworks.net


http://pajek.imfm.si/doku.php?id=pajek

http://rsat.ulb.ac.be/rsat/index_neat.html

http://mavisto.ipk-gatersleben.de/

http://pajek.imfm.si/doku.php?id=pajek
http://rsat.ulb.ac.be/rsat/index_neat.html
http://mavisto.ipk-gatersleben.de


http://visant.bu.edu/

http://www.nrcam.uchc.edu/

http://www.mcell.cnl.salk.edu/

http://www.cellml.org/

http://visant.bu.edu
http://www.nrcam.uchc.edu
http://www.mcell.cnl.salk.edu
http://www.cellml.org


http://www.tm4.org/

http://mplab.sci.univr.it/index.html

http://www.biotapestry.org/

http://www.tm4.org
http://mplab.sci.univr.it/index.html
http://www.biotapestry.org
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Application contexts for Systems Biology: biological networks - 
transcriptomics, proteomics, metabolomics, diseasomics, etc.

In biology, all systems functions are conceivable 
as networks and is possible to abstract them as 

2D graphs

A BFundamental unit

BCR

ABL1

EGFR

JAK2

SRC

KIT

LYN

BTK

PIP3K

JAK1

PTPRG

Graph



Transcriptomic Network = protein regulates gene expression (mRNA)

A Bprotein genenon physical
or physical

A Bprotein protein

Interactomic Network = protein binds physically to other proteins (PPI)

physical

A Bmetabolite metabolite

Metabolic Network (mass transfer) = metabolite transform to another metabolite

non physical



A Bprotein metabolite

Metabolic Network (regulators) = a protein catalyzes the transformation of a 
metabolite to a different one

physical

Cell Network = cell regulates other cells

A Bcell cellphysical

Es. neurons_neurons; APC_T-cells

A Bprotein cell

Protein_Cell Network = protein regulates cells

physical

Es. Cytokine_leukocyte; hormone_cell



DEFINE THE QUESTION

GATHER AND ORGANIZE RELEVANT DATA 

EXPERIMENTAL 
DATA

NETWORK 
DATABASESINFERENCE

GENERATE 
HYPOTHESIS

MODELLING
BlenX4Bio

EXPERIMENTAL 
DATA COLLECTION

SIMULATION
Simulator (BlenX)

ANALYZE DATA

VISUALIZATION
Graph
Plot

DRAW 
CONCLUSION

TEST HYPOTESIS

HYPOTHSIS 
CONSISTENT?

Standard flow-chart 
in Systems biology



Example:  
Differential analysis of gene expression

B-lymphocyte

CLL B-lymphocyte 



cellule normali cellule BCLL 

cDNA Cy3 Cy5 

RNA 

1) Estrazione dell’RNA totale dai campioni 

RNA 

2) Isolamento dell’ mRNA, 
retrotrascrizione in cDNA e marcatura 
con fluorofori 

cDNA Cy3 Cy5 

3) Ibridizzazione 

4) Scansione del vertino 



N
or

m
al
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Statistical clusters  
of altered genes 
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Identification of groups of altered genes 
Differential analysis, intersection, etc.

Gene network reconstruction



Identification of groups of altered genes 
Differential analysis, intersection, modularisation, etc.



Modules GO categories

Modules of altered genes
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Mapping the pathways that give rise to metastasis is one of the key challenges of breast cancer
research. Recently, several large-scale studies have shed light on this problem through analysis of
gene expression profiles to identify markers correlated with metastasis. Here, we apply a protein-
network-based approach that identifies markers not as individual genes but as subnetworks
extracted from protein interaction databases. The resulting subnetworks provide novel hypotheses
for pathways involved in tumor progression. Although genes with known breast cancer mutations
are typically not detected through analysis of differential expression, they play a central role in the
protein network by interconnecting many differentially expressed genes. We find that the
subnetwork markers are more reproducible than individual marker genes selected without
network information, and that they achieve higher accuracy in the classification of metastatic
versus non-metastatic tumors.
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Introduction

Distant metastases are the main cause of death among breast
cancer patients (Weigelt et al, 2005). Clinical and pathological
risk factors, such as patient age, tumor size, and steroid
receptor status, are commonly used to assess the likelihood of
metastasis development. When metastasis is likely, aggressive
adjuvant therapy can be prescribedwhich has led to significant
decreases in breast cancer mortality rates (Weigelt et al, 2005).
However, for the majority of patients with intermediate-risk
breast cancer, the traditional factors are not strongly predictive
(Wang et al, 2005). Accordingly, approximately 70–80%
of lymph node-negative patients may undergo adjuvant
chemotherapy when it is in fact unnecessary (van ‘t Veer
et al, 2002). Moreover, it is believed that many of the current
risk factors are likely to be secondary manifestations rather
than primary mechanisms of disease. An ongoing challenge is
to identify new prognostic markers that are more directly
related to disease and that can more accurately predict the risk
of metastasis in individual patients.

In the recent years, an increasing number of diseasemarkers
have been identified through analysis of genome-wide
expression profiles (Golub et al, 1999; Alizadeh et al, 2000;
Ben-Dor et al, 2000; Ramaswamy et al, 2003). Marker sets are
selected by scoring each individual gene for how well its
expression pattern can discriminate between different classes
of disease. In breast cancer, two large-scale expression studies
by van ‘t Veer et al (2002) andWang et al (2005) each identified
a set of B70 gene markers that were 60–70% accurate for
prediction of metastasis, rivaling the performance of clinical
criteria. Strangely, however, these marker sets shared only
three genes in common, with the first set of markers predicting
metastasis less successfully when scoring patients from the
second study, and vice versa (Ein-Dor et al, 2006). One
possible explanation for the different marker sets is that
changes in expression of the relatively few genes governing
metastatic potential may be subtle compared to those of the
downstream effectors, which may vary considerably from
patient to patient (Symmans et al, 1995; Ein-Dor et al, 2005;
Tomlins et al, 2005).
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A map of human cancer signaling
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We conducted a comprehensive analysis of a manually curated human signaling network
containing 1634 nodes and 5089 signaling regulatory relations by integrating cancer-associated
genetically and epigenetically altered genes. We find that cancer mutated genes are enriched in
positive signaling regulatory loops,whereas the cancer-associatedmethylated genes are enriched in
negative signaling regulatory loops. We further characterized an overall picture of the cancer-
signaling architectural and functional organization. From the network, we extracted an oncogene-
signaling map, which contains 326 nodes, 892 links and the interconnections of mutated and
methylated genes. The map can be decomposed into 12 topological regions or oncogene-signaling
blocks, including a few ‘oncogene-signaling-dependent blocks’ in which frequently used oncogene-
signaling events are enriched. One such block, in which the genes are highly mutated and
methylated, appears in most tumors and thus plays a central role in cancer signaling. Functional
collaborations between two oncogene-signaling-dependent blocks occur in most tumors, although
breast and lung tumors exhibit more complex collaborative patterns between multiple blocks than
other cancer types. Benchmarking two data sets derived from systematic screening of mutations in
tumors further reinforced our findings that, although the mutations are tremendously diverse and
complex at the gene level, clear patterns of oncogene-signaling collaborations emerge recurrently at
the network level. Finally, themutated genes in the network could be used to discover novel cancer-
associated genes and biomarkers.
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Introduction

Cells use sophisticated communication between proteins in
order to initiate and maintain basic cellular functions such as
growth, survival, proliferation and development. Tradition-
ally, cell signaling is described via linear diagrams and
signaling pathways. As many more ‘cross-talks’ between
signaling pathways have been identified (Natarajan et al,
2006), a network view of cell signaling emerged: the signaling
proteins rarely operate in isolation through linear pathways,
but rather through a large and complex network. As cell
signaling is crucial to affect cell responses such as growth and
survival, alterations of cellular signaling events, such as those
that arise by mutations, can result in tumor development.
Indeed, cancer is largely a genetic disease that is caused by
acquiring genomic alterations in somatic cells. Alterations to

the genes that encode key signaling proteins, such as RAS and
PI3K, are commonly observed in many types of cancers.
During tumor progression, it is proposed that a malignant
tumor arises from a single cell, which undergoes a series of
evolutionary processes of genetic or epigenetic changes and
selections so that a cell within the population can acquire
additional selective advantages for cellular growth or survival,
resulting in progressive clonal expansion (Nowell, 1976).
Genetic mutations of the signaling proteins might over-

activate key cell-signaling properties such as cell proliferation
or survival and then give rise to the cell with selective
advantages for uncontrolled cellular growth and promoting
tumor progression. In addition, mutations may also inhibit the
function of tumor-suppressor proteins, resulting in a relief from
normal constraints on growth. Furthermore, epigenetic altera-
tions by promoter methylation, resulting in transcriptional
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Abstract
Success in precision medicine depends on accessing high-quality genetic and molecular data from large, well-annotated pa-
tient cohorts that couple biological samples to comprehensive clinical data, which in conjunction can lead to effective
therapies. From such a scenario emerges the need for a new professional profile, an expert bioinformatician with training in
clinical areas who can make sense of multi-omics data to improve therapeutic interventions in patients, and the design of
optimized basket trials. In this review, we first describe the main policies and international initiatives that focus on preci-
sion medicine. Secondly, we review the currently ongoing clinical trials in precision medicine, introducing the concept of
‘precision bioinformatics’, and we describe current pioneering bioinformatics efforts aimed at implementing tools and com-
putational infrastructures for precision medicine in health institutions around the world. Thirdly, we discuss the challenges
related to the clinical training of bioinformaticians, and the urgent need for computational specialists capable of assimilat-
ing medical terminologies and protocols to address real clinical questions. We also propose some skills required to carry out
common tasks in clinical bioinformatics and some tips for emergent groups. Finally, we explore the future perspectives and
the challenges faced by precision medicine bioinformatics.

Key words: precision medicine; computing infrastructures; clinical bioinformatics; training; clinical bioinformatician;
genomic report

Precision medicine in the real world: the dress
rehearsals
The paradigm of precision medicine is defined by combining the
use of population-based molecular profiling, clinical data, epi-
demiological information and other types of data to make clinical
decisions that are tailored to individual patients [1]. The potential

advantages of this approach, both for patients and doctors, in-
clude more accurate diagnosis and treatments, safer drug pre-
scription, better disease prevention and consequently, a
reduction in healthcare costs. The integration of genomics into
routine clinical practice requires systems and workforces that are
equipped and prepared to handle the scale and complexity of
genomic data. As such, bioinformatics plays an essential role in
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Signal transduction mechanisms: 
What are they?

A signal transduction system is an intracellular biochemical 

mechanism which processes environmental information 

and translates it into a molecular language that the cell is 

able to understand. 

Signalosome (interactome): 

~ 5000 proteins (?) 

~ 300,000 interactions (and counting ...)



Signal transduction systems are the most critical 

biochemical mechanism in all organisms since the determine 

how a living will adapt to the environments, evolve, duplicate 

and mutate. 

They are also called the “black box” of 21th century 

medicine.
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Basic Components and Responses of  
Cellular Signaling

Activation/ 
repression of  
DNA/RNA 
synthesis

Chage in ion 
permeability



Steps of  a signaling pathway

• Recognition of  stimulus by cell surface 
receptor 

• Transfer of  signal across plasma 
membrane 

• Transmission of  the signal to specific 
targets inside the cells 

• Cessation of  the responses



Types of  Cell-Surface-Receptors

1. Ion-channel-linked 
receptors 

2. G-protein-coupled 
receptors 

3. Enzyme-linked 
receptors



Types of  Signaling Proteins

1. Proteins Kinases / Phosphatases.  Proteins 
involved in phosphorylation reactions 

2. GTP-binding proteins (switchers) 
3. Phospholipases 
4. Adaptor and scaffold proteins 



Protein Kinases & 
Phosphatases

Final Target

Kinase cascade



G-Proteins

Accessory proteins  
1. GTPase-activating proteins (GAPs) 
2. Guanine nucleotide-exchange factors 
(GEFs) 
3. Guanine nucleotide-dissociation 
inhibitors (GDIs)



GTPases
switchers









GTPases regulators



Trimeric GTP-binding proteins



Le small GTP-binding proteins
(monomeri, mw. 21 kDa, circa 100 proteine)

Ras
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K-ras
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Adaptor Protein



Scaffold Proteins



G protein-coupled receptor

Seven membrane spanning α helices

G protein binds to guanine 
nucleotides, either 
GDP or GTP. It consists of  three 
different polypeptide subunits, called 
α, β, and γ.



I. Activation of  the G protein by the receptor



II. Relay of  the signal from G protein to effector



III. Termination of  the response





Phospholipases 
(amplificators)





The generation of  phosphatidyl inositol-
derived second messengers 



Elevation of  Ca2+ via the inositol lipid 
signaling pathway



Protein Kinase C 

•  calcium binds C2 domain of protein kinase C 
- causes association with membrane 

•  DAG binds C1 domains of protein kinase C, 
removing pseudosubstrate from active site 

•  PKC phosphorylates specific proteins to 
cause a cellular response 

•  DAG is also a precursor of  
arachidonic acid and  
prostaglandins 



PKC family of 
ser-thr kinase









Protein Kinase C (PKC) is activated by 
inositol phospholipid pathway



Receptor Tyrosine Kinases (RTKs)



Activation of  RTKs



Ras function downstream of  RTKs



Activation of  Ras by RTKs



Ras activates MAP Kinase Cascade



Activation of  Jak-STAT pathway by 
Cytokine Receptors  



TNF-α signaling Pathway



Apoptotic Pathway



Signaling from contacts between cell 
surface and the substratum



TcR: an example of signalling network

The molecules (> 5000) transducing intracellular 

signals generate specific pathways (cascades) 

which, in turn, intersect to create complex networks 

displaying non-linearity, parallelism and/or 

concurrency.  

Emergent properties do appear 

(multimodality, redundancy, thresholding, etc.)



The concept of “potentiated” signalling
NON potentiated cells 

(no stimulation by agonist)

Normal cell Cancer cell

X

Receptor

A

B C
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B C
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Basal (resting) phosphorylation (housekeeping)
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Normal cell Cancer cell

X

Receptor

Ligand Ligand

Potentiated phosphorylation  
(quantitatively and qualitatively different)

Potentiated cells 
(stimulation by agonist) Receptor



A

B C

A
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The basic concept consists in the fact that in the 
potentiated cells (stimulated) any differences 
between different cells, either from different 

subjects or between normal versus pathological 
cells, are greatly “enhanced"!
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Single Cell Profiling of Potentiated
Phospho-Protein Networks in Cancer Cells

sion include mutations to key signaling proteins as well
as epigenetic changes to gene expression patterns (Ha-
nahan and Weinberg, 2000). Cancer genesis occurs in
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and the kinases and phosphatases that interact withBergen
them, are required to initiate and regulate proliferativeNorway
signals within cells. It might be predicted that genetic
changes common in cancers, such as receptor tyrosine
kinase mutations and other signaling-related cytoge-Summary
netic alterations (Spiekermann et al., 2002; Wheatley et
al., 1999), would change the potential of pre-existingAltered growth factor responses in phospho-protein-
signaling networks to respond to external stimuli anddriven signaling networks are crucial to cancer cell
lead to identifiable patterns of signal transduction asso-survival and pathology. Profiles of cancer cell signaling
ciated with gene mutation. For instance, acute myeloidnetworks might therefore identify mechanisms by which
leukemia (AML) is a cancer wherein dysregulated growthsuch cells interpret environmental cues for continued
and inhibition of apoptosis lead to the accumulation ofgrowth. Using multiparameter flow cytometry, we mon-
immature myeloid progenitor cells and oncogenic pro-itored phospho-protein responses to environmental
gression (Lowenberg et al., 1999). Two key parallel signalcues in acute myeloid leukemia at the single cell level.
transduction networks active in cells that are consideredBy exposing cancer cell signaling networks to potenti-
progenitors of AML (Reya et al., 2001) are the STATating inputs, rather than relying upon the basal levels
pathway (Coffer et al., 2000; Smithgall et al., 2000) andof protein phosphorylation alone, we could discern
the Ras/MAPK pathway (Platanias, 2003). Several re-unique cancer network profiles that correlated with ports suggest that STATs, such as Stat3 and Stat5, are

genetics and disease outcome. Strikingly, individual can- constitutively activated in AML (Benekli et al., 2002; Birk-
cers manifested multiple cell subsets with unique net- enkamp et al., 2001; Turkson and Jove, 2000; Xia et al.,
work profiles, reflecting cancer heterogeneity at the 1998). But, a causal link between basal STAT phosphory-
level of signaling response. The results revealed a dra- lation and leukemogenesis in primary patient material
matic remodeling of signaling networks in cancer has not been demonstrated, despite significant evi-
cells. Thus, single cell measurements of phospho-pro- dence implicating these proteins in oncogenic pro-
tein responses reveal shifts in signaling potential of a cesses (Benekli et al., 2003; Bowman et al., 2000; Buet-
phospho-protein network, allowing for categorizing of tner et al., 2002; Calo et al., 2003; Nieborowska-Skorska
cell network phenotypes by multidimensional molecu- et al., 1999). Thought to act upstream of these pathways,
lar profiles of signaling. abnormalities of the Flt3 (fms-like tyrosine kinase 3 )

receptor tyrosine kinase are detected in approximately
Introduction 30% of AML patients and are well established as a nega-

tive prognostic indicator in AML (Gilliland and Griffin,
Intracellular signaling and interpretation of environmen- 2002; Kottaridis et al., 2001; Thiede et al., 2002). Expres-
tal cues play central roles in cancer cell initiation and sion of mutant, activated Flt3 in cell lines has been ob-
maintenance. Actions that lead to cancer cell progres- served to activate STAT and Ras/MAPK signaling (Haya-

kawa et al., 2000; Mizuki et al., 2000). However, basal
levels of Stat5 phosphorylation have been reported to*Correspondence: gnolan@stanford.edu

Example (4):  
Analysis of transduction network alteration in neoplastic cells



Single cell cyto-fluorimetric profiling of "enhanced" 
signal transduction in individual patients













Phospho-proteomics analysis with 
Cytoscape

B-CLL phospho-set 



Example (5): analysis of metabolite network
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Metabonomic, transcriptomic, and genomic variation
of a population cohort
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Comprehensive characterization of human tissues promises novel insights into the biological
architecture of human diseases and traits. We assessed metabonomic, transcriptomic, and genomic
variation for a large population-based cohort from the capital region of Finland. Network analyses
identified a set of highly correlated genes, the lipid–leukocyte (LL) module, as having a prominent
role in over 80 serum metabolites (of 134 measures quantified), including lipoprotein subclasses,
lipids, and amino acids. Concurrent association with immune response markers suggested the LL
module as a possible link between inflammation, metabolism, and adiposity. Further, genomic
variation was used to generate a directed network and infer LL module’s largely reactive nature to
metabolites. Finally, gene co-expression in circulating leukocytes was shown to be dependent on
serum metabolite concentrations, providing evidence for the hypothesis that the coherence of
molecular networks themselves is conditional on environmental factors. These findings show the
importance and opportunity of systematicmolecular investigation of human population samples. To
facilitate and encourage this investigation, the metabonomic, transcriptomic, and genomic data
used in this study have been made available as a resource for the research community.
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Introduction

Our understanding of the genetic basis of complex disease has
recently been transformed by genome-wide association
studies, leading to the identification and cataloging of
hundreds of genomic loci associated with human disease
(Hindorff et al, 2009). In parallel, current technologies have
brought systematic functional investigation of the underlying
disease pathways within reach. Building upon previous work

to integrate genetic and transcriptional profiles to uncover
disease genes (Hubner et al, 2005; Mehrabian et al, 2005),
Chen et al (2008) and Emilsson et al (2008) constitute two
recent large-scale studies, which led to the identification of
novel candidate genes for obesity and the characterization of
the macrophage-enriched metabolic network module, a
subnetwork enriched for genes in inflammatory processes
and metabolic syndrome. These studies added to the growing
body of evidence linking inflammation and the immune
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