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  1. Introduction

Cellular biological interactions have been studied on several different levels. It is 
possible to study interactions in the metabolome, or on a protein-level or on the 
level of gene interactions (Figure 1).  Since the information on these interactions 
is rarely quantitative, they have typically been represented via edges in a graph, 
where the  nodes stand for  either  genes  or  gene  products,  such as  proteins or 
metabolites.  Collection  of  these  cellular  interactions  yield  a  network  whose 
general  structure (or topology) has been a  subject  of recent  intensive studies. 
Whatever level has been selected, it seems that several conclusions are robust to 
the choice of data: (i) there is a short path from any node to another node (small  
world property); (ii) there are many nodes with few connections and a few nodes 
with many connections (hubs) and (iii)  hubs are enriched with essential/lethal 
nodes (centrality & lethality principle coined by Jeong et al., 2001) 

An important  measure  of  the network  topology is  the  distribution of  the 
number of connections per node (connectivity distribution) (Barabasi and Oltvai, 
2004). Metabolic networks (Jeong et al. 2000; Fell and Wagner, 2000; Ma and 
Zeng, 2003), protein-protein interactions networks (Jeong et al. 2000; Maslov 
and Sneppen,  2002),  protein  domain  networks  (Rzhetsky  and Gomez,  2001; 
Wuchty,  2001),  gene  interactions  (Tong  et  al.  2004)  and  gene  expression 
networks  (Featherstone  and  Broadie,  2002;  Agrawal,  2002;  Bergmann  et  al. 
2004; van Noort et al. 2004) have been reported to exhibit scale-free behaviour 
based on the distribution of the connectivities of the network nodes. Although 
networks are commonly referred as being scale-free, it is their connectivity (also 
called degree) distribution that is considered to be scale-free.

The search for biological properties that exhibit scale-free behaviour extends 
beyond networks of interactions, with examples from the distribution of gene 
expression levels (Ueda et al. 2004) and the spot intensities (Hoyle et al. 2002) 
on microarrays to the frequency of occurrence of generalized parts in genomes 
of different organisms (Luscombe et al. 2002).  Thus, the concept of scale-free 
network has emerged as a powerful unifying paradigm in the study of complex 
networks in biology, physics and social sciences (Barabasi and Oltvai, 2004).  



Figure 1.  This representation of cellular biological interactions gives a general overview of how 
biological networks are represented on different levels. It is an abstract representation of a highly 
complex network of interactions between genes, proteins and metabolites. These networks are 
commonly studied independently of each other, in their own spaces, while they are obviously 
closely interconnected and interrelated. Here G-space stands for a space of gene interactions, P-
space  is  a  space  of  protein  interactions  and  M-space  is  a  space  of  interactions  between 
metabolites.  Solid arrows represent  direct  causal  interactions,  whereas the dotted arrows are 
indirect  gene interactions,  which occur via intermediate  causal  interaction(s).  A widely used 
graph approach represents  networks as  graphs wherein a  node stands for  a  gene, protein or 
metabolite,  and an edge represents an interaction between the two nodes.  All  three types of 
considered networks have been previously studied using a graph-approach and they have all 
been shown to share certain characteristics, such as small-world property and existence of hubs 
with a high proportion of essential/lethal nodes. 

Why is the interest in scale-freeness of biological networks has been so great? 
Scale-free  networks  possess  a  number  of  intriguing  properties.  Firstly,  the 
presence of several hubs in the biological networks and a large number of nodes 



with a few connections has been cited as the most characteristic feature of a 
scale-free network.  Secondly, scale-free networks belong to the class of small 
world networks (Amaral et  al.  2000). This small-world property of networks 
allows fast communication between different nodes. Scale-free networks have 
also been reported to be robust to random breakdowns (Albert et al. 2000). All 
these properties are vitally important for biological networks. However, they are 
not unique to scale-free networks. One can come up with other functional forms 
that  will  exhibit  the  small-world  property  as  well  as  the  enrichment  of  the 
network with highly connected nodes.   

A unique property that scale-free systems possess is their invariance to changes 
in scale.  The term ‘scale-free’ refers to a system defined by a functional form 

)(xf  that remains unchanged within a multiplicative factor under a rescaling of 
the independent variable x . Effectively, this means power-law forms, since these 
are  the  only  solutions  to  )()( xbfaxf =  for  all  Ν∈x  (Newman,  2003).  The 
scale-invariance property is often interpreted as the self-similarity. Any part of the 
scale-free network is stochastically similar to the whole network and parameters 
are assumed to be independent of the system size (Jeong et  al.  2000).   Other 
mathematical laws that might fit to describe similar qualitative properties of the 
network degree distribution will not satisfy an important condition of the scale 
invariance. Therefore, a network is defined as scale-free if a randomly picked 
node has k connections with other nodes with a probability that follows a power-
law γ−kkp ~)( , where γ  is the power-law exponent. 

Since  other  than  power-law  mathematical  forms  do  not  possess  the  scale-
invariance (self-similarity) property, the exact form of the degree distribution of 
biological networks has important implications for the biological conclusions that 
can and cannot  be  drawn from the actual  topology of  the  architecture  of  the 
network. 

The very question on whether and how the topology of biological networks can 
provide insights  into the  biology is  still  debated  (see  review Alm and Arkin, 
2003; Huang, 2004). It is widely believed that unravelling the network topology 
will  lead  to  understanding  the  design  principles  of  biological  networks  and 
therefore  provide  some  clues  into  the  dynamical  evolutionary  processes  that 
generated these networks (Jeong et al, 2000).  

In  pursuit  of  further  understanding  of  these  processes,  formal  evolutionary 
models that  lead to generation of scale-free network architecture have already 
been proposed. It is inevitable that such models are oversimplifications of reality. 
However, the underlying assumptions of these evolutionary models are important 
as they can provide clues to our understanding of evolution. Several plausible 
evolutionary  mechanisms  have  been  suggested,  among  them  the  process  of 
duplication, whereby a newly created node inherits all or part of the connections 
of  the  parent  node;  a  divergent  “big  bang”  model  with  evolutionary  drift 
(Dokholyan et al, 2002); and a birth-death-innovation model (Karev et al, 2002). 
The duplication models (Bhan et al, 2002; Rzhetsky and Gomez, 2001; van Noort 



et al,  2004) have been shown to result  in scale-free networks,  while plausible 
evolutionary phenomena such as evolutionary drift has been shown to contradict 
the power-law (Przytycka and Yu, 2004). 

Often,  the underlying principles and assumptions of  evolutionary models are 
adjusted so that they yield the scale-free topology of the network. For example, 
the scale-free network can appear from the model of genome evolution if there is 
a precise balance between the rates of birth, death and innovation (Karev et al, 
2002).  It is therefore vitally important to determine the topology of the biological 
networks correctly and not to rely on oversimplified assumptions of the scale-
freeness of their connectivity distribution. Potentially, there are other biological 
implications of the network topology but those are still debated (Alm and Arkin, 
2003; Huang, 2004; Wolf et al, 2002).

The goal of this paper is to establish whether indeed the biological networks are 
scale-free. By applying formal tools of statistical analysis, we here show that the 
scale-free  assumption  does  not  hold  for  any  of  the  networks  that  we  have 
analyzed. 

2. Analysis.

A widely used method for finding an indication of a scale-free network, has 
been  to  fit  a  straight  line,  to  the  connectivity  relative  frequency  distribution, 

γ−kkp ~)( , 1≥k  on a log-log plot, where k stands for the number of connections 
(connectivity) of a node (Jeong et al. 2000; Ma and Zeng, 2003; Bergmann et al. 
2004; Guelzim et al. 2002; Aloy and Russell, 2004). It has become tempting to 
describe  any  decreasing  experimental  data  on  a  number  of  connections  in  a 
biological  network  on  a  log-log  plot  by  a  linear  fit.  An example  of  fitting  a 
straight line  )log())(log( kkN γα −=  to two interaction datasets can be seen in 
Figure 2, where N(k) stands for the observed connectivity frequency distribution. 
It is doubtful that a linear fit here can be taken as a good indicator of the power-
law distribution. Notice that the points in the plot represent unequal numbers of 
observations, which is ignored by the linear fit. Moreover, fitting a straight line 
doesn’t necessarily make the points follow it.  More formal tools for finding out 
whether the connectivity distribution is indeed described by the power-law are 
therefore required. 

As a critical evaluation of the scale-free property of biological networks, we 
performed  a  statistical  re-analysis  of  datasets  of  interactions  of  biological 
networks that have been reported to be scale-free.  Given the importance of the 
scale-free property, we estimate the exponent, γ , by fitting the power-law to the 
data using the maximum-likelihood method and perform a goodness-of-fit test to 
determine  whether  the  data  is  indeed  being  drawn  from  the  power-law 
distribution. 
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Figure 2. Examples of fitting straight lines to the connectivities of two interaction datasets.

The parameter γ  in the power-law density, 
)(

)(
γζ

γ−

= kkp , where )(γζ is the 

Riemann zeta-function (truncated for  1≤γ ) and  1≥k , has been estimated by 
maximum  likelihood  for  each  of  the  networks.  The  number  of  connections 
(connectivity),  ix , for a node  i  is often obtained from experimental data. In a 
large network the number of connections can be assumed to be approximately 
independent. (In the Appendix we show that the assumption of independence of 
connectivities  of  all  nodes  in  the  network  can  be  weakened  by  assuming 
independence of connectivities of nodes in a smaller subnetwork and this does 
not affect the main conclusion of the paper.) 

As a result, the likelihood function can be written as ∏
=

−=
N

i
ixxL

1

)(/)|( γζγ γ , 

where N is the maximum observed connectivity, i.e. potentially the total number 
of  genes  in  the  network  minus  one.  The  log-likelihood 
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1

γζγγ Nxxl
N

i
i −−= ∑

=
 is  maximized  by  finding  zeros  of  its 

derivative  using  the  Newton-Raphston  method.  In  order  to  test  whether  the 
connectivity data  from a particular network can be considered scale-free,  we 

consider a chi-squared statistic, 2
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observed values of connectivities from the data and kE are the values estimated 
from the  power-law with  γ  estimated  by  maximum likelihood  as  described 
above. Using standard statistical procedure, we pool for connectivity values over 

*k , for which the expected number of connections is less than 5 . As a result, the 



chi-squared  statistic  is  approximately  chi-squared  distributed  with  2* −k  
degrees of freedom, if the data come truly from the power-law distribution. As a 
result, the p -value for each of the networks can be calculated by the exceedence 
probability of a chi-squared distribution. 

For  the  exponentially  truncated  power-law,  the  density  is  given  by 

);(
)/exp(

)(
1 c

c

kC
kkk

kp
γ

γ −
=

−

, where ∑
=

− −=
N

j
cc kjjkC

1
1 )/exp();( γγ , γ  is the power-

law exponent  and  ck  is  the  cut-off  parameter.  Likelihood can be  written as 
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to two parameters γ  and ck by finding zeros of the derivative using the Newton-
Raphson  method.  Corresponding  p -values  are  calculated  similarly  to  the 
power-law by considering a chi-squared statistic.  

R-code  used  for  calculations  and  some  instructions  can  be  found  on 
www.stats.gla.ac.uk/~raya/howscalefree/howscalefree.html.  Alternatively,  a  R-
web interface is available on exgen.ma.umist.ac.uk/ under Public Tools.

3. Results 

We have examined more than ten published datasets with biological interactions. 
The datasets  include six protein-protein interaction networks data (Uetz et  al. 
2000; Schwikowski et al. 2000; Ito et al. 2001; Li et al. 2004; Rain et al. 2001; 
Giot et al. 2003), gene interaction networks obtained experimentally by genome 
wide location analysis (Lee et al. 2002) and synthetic lethal interactions  (Tong et 
al. 2004) and networks constructed from databases  (Guelzim et al. 2002) as well 
as  metabolic  interaction  networks  (Ma  and  Zeng,  2003;  see  Supplementary 
Table1). We have also analyzed gene expression networks constructed from the 
microarray data  (combined yeast  cell  cycle  data  by Spellman et  al.  1998) by 
thresholding Pearson correlations of pairs of genes, similarly to  (Bergmann et al. 
2004; van Noort et al. 2004). Most of these networks have been reported to be 
scale-free by fitting a straight line on a log-log plot (Figure 2). 

http://exgen.ma.umist.ac.uk/
http://www.stats.gla.ac.uk/~raya/howscalefree/howscalefree.html


Datasets                         γ̂                           p -value
Uetz                                 2.05                        0.0004
Schwikowski                   1.87                         <10-4

Ito                                    2.02                        <10-4

Li                                     2.31                        0.0014 
Rain                                 1.61                        <10-4

Giot                                 1.53                        <10-4

Tong                               1.45                        <10-4

Lee                                 2.03                        <10-4

Guelzim                          1.56                        <10-4

Spellman/Cho                 1.10(0.96)               <10-4 (<10-4)

Table 1: Exponents of the power-law and scale-free p-values for published protein and gene 
interaction datasets.  This table contains results of our re-analysis of 10 published datasets that 
are referred here by the first author of the paper. These datasets include several experimentally 
obtained protein-protein interaction data (Uetz et al. 2000; Schwikowski et al. 2000; Ito et al. 
2001; Li et al. 2004; Rain et al. 2001; Giot et al. 2003) for different organisms, gene interactions 
measured experimentally  (Lee  et  al.  2002;  Tong et  al.  2004),  constructed  from the database 
(Guelzim et al. 2002) and constructed by thresholding pair-wise correlations with threshold equal 
0.7 and 0.6 (values in parentheses) from the combined yeast cell cycle dataset (Spellman et al. 
1998).  For each dataset the power-exponent  γ  is calculated by maximum likelihood. The p -
value summarizes the evidence against the Null-hypothesis that the network is scale free: these 
tiny (<10-6) p-values suggest that the network is not consistent with a scale-free network.

However,  the  statistical  analysis  reported  in  Table  1  found  that  all  these 
interaction dataset networks differ significantly from the power-law distribution 
based  on  chi-squared  goodness-of-fit  test  (Analysis).  These  results  clearly 
demonstrate  that  these  interaction  datasets  do  not  follow  the  power-law 
distribution, in contrast of what has been commonly assumed or estimated from 
the log-log fit. 

It has been sporadically reported (Jeong et al. 2001; Giot et al. 2003) that the 
connectivity distribution in some biological networks might be better described 
by a truncated power-law, i.e. a power-law regime followed by a sharp drop-off,

)/exp(~)( ckkkkp −−γ ,  1≥k .  The parameter  ck is  the cut-off,  such that  the 
number of connections k  is less than expected for pure scale-free networks for 

ckk >  and the behaviour of the network is approximately scale-free within the 
range ckk <≤1 . By fitting the truncated power-law to the interaction datasets 
(see  Analysis),  we  have  found  that  several  datasets  are  consistent  with  the 
truncated power-law (Table 2; p -value 1.0> ).

Datasets                         γ̂                   ck̂           p -value



Uetz                                 1.60                8.7            0.370
Schwikowski                   1.26                6.2            0.105
Ito                                    1.79              26              <10-4

Li                                     2.10              19.5            0.018
Rain                                 1.12              11.5            0.200
Giot                                 1.09               20              0.001
Tong                               0.96               23.7            <10-4

Lee                                 1.96               294             <10-4

Guelzim                          1.18               15               <10-4

Spellman/Cho                 1.07(0.78)      73(99)        0.700 (0.100)

Table 2:  Parameters of the truncated power-law and truncated power-law p-values for 
published protein and gene interaction datasets.  The parameters of the truncated power-law 
distribution,  γ  and  ck , are calculated by maximum likelihood method for all 10 interactions 
datasets.  Here  the p -value  summarizes  the  evidence  against  the  truncated  power-law 
distribution. 

However, among those that can indeed be drawn from the truncated power-law 
distribution, the estimates of the cut-off parameter ck have small values: this means 
that  these  networks  exhibit  scale-free  behaviour  only  in  a  very  small  range  of 
connectivities:  ckk <≤1 . One exception is the gene co-expression network that 
has been constructed from the yeast  microarray data (Spellman et  al.  1998)  by 
thresholding pair-wise correlations between gene profiles (last column in Table 2). 
Unlike  other  networks  in  this  study,  the  yeast  co-expression  network  is  not  a 
network  of  physical  interactions.  This  network  connects  genes  that  might 
participate in the same biological processes. A large proportion of false positives in 
this  network  might  contribute  to  its  overall  topology.  In  any  case,  this  co-
expression network does not belong to the class of scale-free networks but it might 
belong to a class of networks described by a truncated power-law.

Scale-free networks and broad-scale networks (characterized by truncated power-
law) belong both to the class of small-world networks, but are of different types. 
Amaral et al. (2000) claim that such different types of networks are likely to be 
generated  by  different  mechanisms:  a  plausible  mechanism  to  explain  the 
difference between two classes might be the constraints of node ageing and cost of 
adding new links. In terms of biological networks, their topology should give clues 
for  the  evolutionary  mechanisms  that  have  created  those  networks.  Networks 
described by the truncated power-law can be generated by mechanisms that include 
evolutionary  drift  (Przytycka  and  Yu,  2004),  while  scale-free  networks  are 
consistent with duplication events (Rzhetsky and Gomez, 2001; van Noort et al, 
2004). 

4. Conclusions



The  idea  of  scale-free  behaviour  and  self-similarity  at  different  levels  of  the 
network  combines  both  the  simplicity  of  the  underlying  principle  and  the 
complexity of the actual architecture of the network. It is therefore a very appealing 
concept, one that suggests a common underlying principle for different types of 
networks. 

In  this  paper,  however,  we  have  found  that  the  number  of  connections  in 
biological  networks  significantly  differs  from  the  power-law  distribution  and 
these networks are not scale-free.  Our conclusions are in resonance with those of 
Stumpf et al. (2005a) who have recently demonstrated by sampling properties of 
network degree distributions that  the inferences  about  the scale-free nature of 
biological  networks  may  have  to  be  treated  with  some  caution.  In  addition, 
Stumpf  et  al.  (2005b,c)  applied  formal  statistical  model  selection  methods  to 
determine with functional form best describes degree distributions of protein and 
metabolic networks from different organisms.  These authors showed that that 
simple scale-free models do not provide an adequate description of real network 
data.  

Therefore, the evolutionary mechanisms, such as gene duplication, evolution of 
new gene  functions  and  gene  loss,  suggested  to  generate  scale-free  networks 
(Rzhetsky  and  Gomez,  2001;  van  Noort  et  al.  2004)  do  not  by  themselves 
adequately describe the appearance of biological networks.  If the distributions 
are not scale-free, additional hypotheses are required to explain the underlying 
probability  distributions  (Kuznetsov  et  al.  2002).  Recently,  it  has  been 
demonstrated that divergent evolutionary drift, which is a plausible evolutionary 
mechanism, is not compatible with scale-free models (Przytycka and Yu, 2004). 

Some  of  the  conclusions  drawn  from  supposedly  scale-free  behaviour  are 
potentially misleading.  Uncritically assuming that  a network is  scale-free might 
therefore lead to mistaken conclusions, for example that “the yeast co-expression 
network  can  be  explained  by  a  simple  model”  (van  Noort  et  al.  2004).  Also, 
randomly selected subsets of edges from a network that is not scale-free will not 
generally follow a power-law distribution and the interaction space as a whole will 
not have the same distribution shape as any major subset,  as has been used for 
considerations of optimal design of protein-protein interaction experiments (Lappe 
and Holm, 2004). Moreover, the properties of a known part of a network that is not 
scale-free cannot be used directly to assess the properties of an unknown part of the 
network, as was claimed in Guelzim et al (2002) and Wolf et al (2002). 

It  is  worth pointing out  that  the main qualitative results,  i.e.  small-world and 
lethality  &  centrality  properties,  still  hold  true  independently  of  the  precise 
mathematical form of the connectivity law and of their lack of scale-free behaviour 
for all of the datasets mentioned in this paper. Examples of other distributions with 
similar qualitative properties (i.e. existence of a few hubs and many nodes with a 
few connections) include truncated power-law (Jeong et al. 2001; Giot et al. 2003), 
generalized Pareto law (Kuznetsov et al. 2002; Przytycka and Yu, 2004), stretched 



exponential distribution (Laherrere and  Sornette, 1999), geometric random graph 
(Przulj et al. 2004), geometric distribution or combinations of the above. None of 
the above distributions, however, yields scale-free behaviour for the entire network. 
It is therefore crucial to generate a richer set of evolutionary models of biological 
networks, which are able to model and validate the network properties separately. 

The  relation  between  biology  and  network  topology  is  very  much  an  open 
question. At this stage, it is vitally important to get the topology right in order to 
make  any  future  conclusions  about  the  actual  biology  accessible  and  to  start 
exploring complex issues of evolution and design principles of biological networks.
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         Appendix

In order to compute the power-law exponent and to test the hypothesis on whether 
the network is scale-free, we assumed that the connectivities of all the nodes in a 
large network are independent. To evaluate whether this assumption has an effect 
on  our  conclusions,  we  perform  an  alternative  analysis,  which  relaxes  this 
independence assumption. We note that connectivities of nodes in a sub-network 
are less dependent than the connectivities in the full network. 

For  each sub-network of  randomly picked nodes  constructed from the dataset 
network,  the  power-law  exponent  estimate  γ̂  and  the  usual  chi-square  test 

statistics  ∑
=

−=
*

1

2 /)(
k

k
kkk EEOT  were  calculated  as  described  in  the  Analysis 

section. Each sub-network contains one-tenth of the nodes in the whole network. 
Such sub-networks were sampled from the dataset network 1000 times, yielding 
the test statistic and the estimate for γ̂ , averaged over all sub-networks. 

Then, 1000 networks were simulated with the same number of nodes as in the 
dataset network and the connectivites following the power-law with the exponent 
γ̂ .  The procedure of sampling subnetworks from each of the simulated networks 
was repeated 1000 times, resulting in 1000 values of the chi-squared statistic for 
each simulated network.  A one-side p-value for  the dataset  network was then 
computed.  

The results for all the datasets studied in the paper are presented in the Table 3 
supporting the conclusion that there is a lot  of evidence that the experimental 
networks are not scale-free. 

Datasets                         γ̂                           p -value
Uetz                                 1.96                         <10-3

Schwikowski                   1.79                         <10-3

Ito                                    1.98                        <10-3

Li                                     2.26                        <10-3

Rain                                 1.52                        <10-3

Giot                                 1.48                        <10-3

Tong                               1.39                        <10-3

Lee                                 2.03                         0.007
Guelzim                          1.52                         <10-3

Spellman/Cho                 1.08(0.94)                <10-3 (<10-3)

Table 3:  Exponents of  the power-law and scale-free p-values  for  published protein and gene 
interaction datasets, calculated under relaxing the independence assumptions.  


