
P E R S P E C T I V E

The hope of the rapid translation of ‘genes to drugs’ has
foundered on the reality that disease biology is complex, 
and that drug development must be driven by insights into
biological responses. Systems biology aims to describe and to
understand the operation of complex biological systems and
ultimately to develop predictive models of human disease.
Although meaningful molecular level models of human cell 
and tissue function are a distant goal, systems biology efforts
are already influencing drug discovery. Large-scale gene,
protein and metabolite measurements (‘omics’) dramatically
accelerate hypothesis generation and testing in disease
models. Computer simulations integrating knowledge of organ
and system-level responses help prioritize targets and design
clinical trials. Automation of complex primary human cell–
based assay systems designed to capture emergent properties
can now integrate a broad range of disease-relevant human
biology into the drug discovery process, informing target 
and compound validation, lead optimization, and clinical
indication selection. These systems biology approaches
promise to improve decision making in pharmaceutical
development.

Drug discovery and systems biology began together: in traditional or
‘folk’ medicine, herbal drugs were discovered through direct if anec-
dotal observations in people with diseases, the most relevant complex
biological systems there are. With the advent of chemistry in the late
1800s and early 1900s, derivatives of natural products and subse-
quently novel synthetic chemicals made their way into drug discovery
pipelines; but screening was still in the setting of complex disease biol-
ogy, with animals replacing patients as the primary ‘guinea pigs.’ Most
of today’s pharmaceuticals (at least on a ‘doses per patient-year’ basis)
derive directly or indirectly from such early ‘systems biology’-based
drug discovery. In the interest of speed and the perceived advantages of
mechanistic insight, however, animal models were successively
replaced with tissue-level screens (e.g., vascular or tracheal muscle
tone), simple cell-based pathway screens (proliferation, cytokine pro-
duction) and finally with today’s ultra-high-throughput screens capa-
ble of interrogating individual molecular targets with hundreds of
thousands of compounds a day.

Today’s ‘win-by-numbers’ approach is very powerful when applied
to known, validated targets (which often means targets of historical
drugs), but has led to disappointingly few new drugs when applied to
less well biologically understood (e.g., genome-derived) targets. The
desire to mine the wealth of the genome has come face to face with the
realization that knowing a target is not the same as knowing what the
target does, let alone knowing the effects of a chemical inhibitor in
diverse disease settings. In fact, despite the enormous investment in
genomics and screening technologies over the past 20 years, the cost of
new drug discovery continues to rise while approval rates fall1. The
primary selection of drug targets and candidates has become divorced
from the complexity of disease physiology. Reenter systems biology, in
modern guise.

The goal of modern systems biology is to understand physiology
and disease from the level of molecular pathways, regulatory networks,
cells, tissues, organs and ultimately the whole organism. As currently
employed, the term ‘systems biology’ encompasses many different
approaches and models for probing and understanding biological
complexity, and studies of many organisms from bacteria to man.
Much of the academic focus is on developing fundamental computa-
tional and informatics tools required to integrate large amounts of
reductionist data (global gene expression, proteomic and metabolo-
mic data) into models of regulatory networks and cell behavior.
Because biological complexity is an exponential function of the num-
ber of system components and the interactions between them, and
escalates at each additional level of organization (Fig. 1), such efforts
are currently limited to simple organisms or to specific minimal path-
ways (and generally in very specific cell and environmental contexts)
in higher organisms2–4. Even if our ability to measure molecules and
their functional states and interactions were adequate to the task, com-
putational limitations alone would prohibit our understanding of cell
and tissue behavior from the molecular level. Thus, methodologies
that filter information for relevance, such as biological context and
experimental knowledge of cellular and higher level system responses,
will be critical for successful understanding of different levels of
organization in systems biology research.

This review focuses on recent advances in the practical applica-
tions of systems biology to drug discovery. Three principal approaches
are discussed (Fig. 1): informatic integration of ‘omics’ data sets 
(a bottom-up approach); computer modeling of disease or organ 
system physiology from cell and organ response level information
available in the literature (a top-down approach to target selection,
clinical indication and clinical trial design); and the use of complex
human cell systems themselves to interpret and predict the biological
activities of drugs and gene targets (a direct experimental approach 
to cataloguing complex disease-relevant biological responses). These
complementary approaches, which must ultimately be integrated 
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P E R S P E C T I V E

in the quest for a hierarchical, molecule-to-systems level understand-
ing of human disease, are already having an impact on the drug 
discovery process.

Omics: large-scale data generation and mining
It could be argued that a full understanding of the responses of a sys-
tem requires knowledge of all of its component parts. Omics
approaches to systems biology focus on the building blocks of complex
systems (genes, proteins and metabolites). These approaches have
been adopted wholeheartedly by the drug industry to complement 
traditional approaches to target identification and validation, for gen-
erating hypotheses and for experimental analysis in traditional
hypothesis-based methods. For example, omics can be used to ask
what genes, proteins or phosphorylation states of proteins are
expressed or upregulated in a disease process, leading to the testable
hypothesis that the regulated species are important to disease induc-
tion or progression (Table 1). Integration of genomics, proteomics and
metabolite measurements within the context of controlled gene or
drug perturbations of complex cell and animal models (and in the
context of clinical data) is the basis of systems biology efforts at a num-
ber of drug companies, including Eli Lilly (Indianapolis, IN, USA),
where they are accelerating the study of complex physiological
processes such as bone metabolism5.

Omics classification of disease states can lead to more efficient 
targeting or even personalization of therapies by identifying the spe-
cific molecular pathways active in particular disease states and in indi-
vidual patients6. Another valuable application of the technology is the
identification of surrogate markers for disease detection, or for moni-
toring of therapies7,8. Although omics approaches thus accelerate

development of mechanistic hypotheses and clinical insights, a sys-
tems-level understanding does not automatically emerge.

Significant efforts are underway to understand key pathway and
organism-level responses by relying on the emergent properties of
global gene and protein expression data (that is, the properties of the
system as a whole that cannot be predicted from the parts). In rela-
tively simple organisms, studies incorporating analysis of time-series
genome-wide mRNA expression data, large-scale perturbation analy-
ses and identification of coregulated components, and protein-protein
interaction studies have led to new insights into pathway functions
and signaling network organization in specific biological processes,
such as cell proliferation or the response to metabolic perturba-
tion9–12. Although the added levels of complexity in human disease, as
well as economic and computational limitations severely limit the util-
ity of omics as a stand-alone approach for systems-level understand-
ing, omics technologies will be important for constructing the
‘scaffolds’ that help define and limit the possible pathways and connec-
tivities in top-down models of cell-signaling networks3.

Computer models: from pathways to disease physiology
The goal of modeling in systems biology is to provide a framework for
hypothesis generation and prediction based on in silico simulation of
human disease biology across the multiple distance and time scales of
an organism (from molecular reactions to organism homeostasis and
disease responses)2,4. We are certainly a long way from achieving any
general, integrated model of human cell behavior, let alone human
organismal biology, but real progress is being made in developing and
testing computational and experimental methods for in silico systems
biology at different scales (Table 2). Moreover, we do not need a global
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Scale

Molecules Pathways Cells Tissues Humans

10– 9 10– 8 10–7 10– 6 10–5 10–4 10–3 10–2 10–1 1

Omics

10 –6 10 2 104 10 5 10 8

Meters
Seconds

Modeling

Complex cell systems assays

Figure 1  Approaches to systems biology in the pharmaceutical industry. Omics (the bottom-up approach) focuses on the identification and global
measurement of molecular components. Modeling (the top-down approach) attempts to form integrative (across scales) models of human physiology and
disease, although with current technologies, such modeling focuses on relatively specific questions at particular scales, e.g., at the pathway or organ levels.
An intermediate approach, with the potential to bridge the two, is to generate profiling data (e.g., biologically multiplexed activity profiling or BioMAP data)
from high-throughput assays designed to incorporate biological complexity at multiple levels: multiple interacting active pathways, multiple intercommuni-
cating cell types and multiple different environments. Such a complex cell systems approach addresses the need for data on cell responses to physiological
stimuli and to pharmaceutical agents as an aid to modelers, and also as a practical approach to systems biology at the cell signaling network and cell-cell
interaction scales.
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synthesis for modeling and simulation to be useful for basic biological
insights and drug development; highly focused, problem-directed
models are already having an impact on target validation and clinical
development decisions (Table 1).

Mathematical and more recently computational models have a rich
history in human physiology4,13–15. Modeling efforts useful for drug
discovery and development must simulate responses at the scale of cell
and tissue or organ complexity (that is, the scale at which disease man-
ifests itself). At the same time, a sufficient level of detail must be
included such that intervention points accessible to drug discovery are
available and can be modulated in silico to predict an organ level read-
out. Thus, a model simulation of heart contractility must incorporate
the connection between Na+/Ca2+ exchangers and contractility to be
useful to predict the effect of drugs targeting these channels14.
Difficulty arises in developing models that can effectively integrate the
molecular, cellular and organ levels. In addition to pure computational

issues, limitations in bottom-up knowledge
and in our understanding of pathway and
network architecture and interactions, as well
as a general lack of standardized knowledge of
cell- and tissue-level responses to bioactive
stimuli that could be used to validate models
(see below) are fundamental, long-term prob-
lems that have to be addressed before models
integrating complexity at multiple scales can
be considered.

A practical approach to address the 
computational issues is to put in place an
organ-level framework and add increasing
complexity in a modular format. For exam-
ple, one can begin with models of inflam-
mation that examine cell-cell communica-
tion through cytokine networks and then
start replacing the ‘black box’ cells with simu-
lations of cell behavior (Table 2) modeled
from network modules (e.g., models of
cytoskeleton motility, proliferative or cyto-
kine responses), ultimately replacing ‘black
box’ pathway modules with bottom-up
approaches4.

Entelos (Foster City, CA, USA) has devel-
oped complex simulations of disease physiology using a framework of
deterministic differential equations based on empirical data in
humans16 (Table 2). In these models, internal signaling pathways are
not modeled explicitly; cells or even tissues are represented as black
boxes that respond to inputs by giving specified outputs that vary with
time. Using such an organ level ‘disease physiology’ framework, Stokes
et al.17 have developed a computational model of chronic asthma that
incorporates interactions among cells and some of the complexity of
their responses to each other and their environment. Model para-
meters can be modified to reach a particular steady state reference
point, for example, the state of chronic asthma (including chronic
eosinophilic inflammation, chronic airway obstruction, airway hyper-
responsiveness and elevated IgE levels) or the state of exercise-induced
airway obstruction. Simulated ‘asthmatics’ respond as expected to var-
ious drugs, including β2 agonists, glucocorticoids and leukotriene anta-
gonists17. Moreover, by simulating an antibody-dependent reduction
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Table 1  Uses for, and challenges of, each systems biology approach: omics,
complex cell systems and modeling

Omics Complex cell systemsb Modeling

Systems level insights +/–a + +

Hypothesis generation + + +

Model testing – + –

Target identification/ + + +/–
validation

Compound validation +/– + –

Lead optimization/SAR – + –

Disease indication/ – +/– +
trial design

Throughput Slow Fast Very slow

Challenges Quantity of data Availability of cell types Missing or erroneous data 
(curse of dimensionality) (‘garbage in, garbage out’)

Data quality Limited modeling of Model validation difficult

Need for biological context systemic effects

aApproach cannot address issue, –; approach can address issue, +; approach can address issue under certain conditions, +/–.
be.g., see BIOMAP, Fig. 3.

Table 2  Examples of computational models relevant to human disease biology

Approach System Comments Reference

Disease physiology Heart Review of quantitative models of the heart from genes to physiology 14

Diabetes Review of approaches for modeling diabetes 21

Asthma Computationally-based mathematical model of chronic asthma predicts patient responses to different therapies 17

Model of chronic asthma predicts lack of efficacy of IL-5 inhibition 18

Integrative cell Cancer Network model containing 1,000 genes/proteins, 3,000 components predicted effect of specific gene knockdowns 34
models Cardiomyocyte Approach for linking modules (intermediary metabolism, electrophysiology and mechanics) for developing 15

computational model of cardiomyocytes

Pathway modelsa Multiple Emergent properties (extended signal duration, threshold behaviors) of signaling in network models 23

EGFR/MAPK Review of computational models of EGFR signaling 35

Ligand concentration change rate versus affinity in downstream outcomes 36

Describes executable logic model of EGFR network based on rewrite rules 37

NF-κB Delay features of signal propagation mechanisms and sensitivity characteristics of signaling components 38

Reveals role of IκB isoforms in bimodal signal processing characteristics of NF-κB signaling pathway 39

aSee http://www.cellml.org/examples/repository/ for more examples.
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P E R S P E C T I V E

in interleukin (IL)-5 protein (a driver of eosinophilia during asthma),
this model predicts a decrease in airway eosinophilia but little thera-
peutic improvement in airway conductance18, predictions that are
consistent with the results of a clinical trial testing a humanized anti-
IL-5 antibody in asthmatics19.

Similar cell- and organ-scale models of glucose metabolism and
homeostasis have a long history, evolving from simple relationships
between glucose and insulin levels in circulation20 to more complex
models involving integrated multiple tissue responses and their
involvement in glucose metabolism21. A presentation of Entelos’ dia-
betes ‘PhysioLab’ at a recent conference (In Silico Biology Conference,
San Diego, California, USA, June 2–3, 2002; C. Wallwork, personal
communication) described how such a computational model has been
used in the design of phase 1 trials for an unspecified drug treatment
for type 2 diabetes. The results suggested that computational modeling
enabled the experimental dosing arms and the number of patients
required for the trial to be decreased, thus potentially reducing costs
and increasing the probability of clinical success.

More detailed understanding of the systems behavior of intercellu-
lar signaling pathways, such as the identification of key nodes or regu-
latory points in networks or better understanding of crosstalk between
pathways, can also help predict drug target effects and their translation
to organ and organism level physiology. To this end, a very large num-
ber (more than can be fairly cited) of efforts have been focused at the
scale of signaling pathways within cells (e.g., see Table 2). These mod-
els benefit from the large amount of literature data and the promise
that omics efforts can provide constraints on the pathways (see previ-
ous ‘Omics: large-scale data generation and mining’ section). As for
cell- and organ-level models, simulations of mammalian signaling
networks usually rely on time-dependent differential equations and
model the pathway in isolation and under very specific (and simple)

conditions3,22. A next level of detail that enhances the utility of such
pathway models is the crosstalk between pathways. Bhalla et al.23 mod-
eled signaling modules and found that combinations of simple mod-
ules lead to nonlinear responses or ‘emergent properties’ of the system.
These nonobvious results based on pathway nonlinearity hold prom-
ise for identification and prioritization of intervention points within
signaling networks.

Interestingly, the architecture of signaling pathways displays signifi-
cant conservation during evolution, an insight that is being used to
help define and understand mammalian cell signaling pathways based
on homology with well-defined pathways in lower organisms,
and between evolutionarily duplicated pathways in man (e.g., the
PathBlast tool24). However, although pathway homologies may suggest
conservation of key points for chemical intervention in signaling,
divergence of pathway functions and regulatory interactions are the
norm so that ultimately there can be no substitute for studies in com-
plex human systems.

No matter how successful current attempts at predictive modeling
turn out to be, such models raise the challenge of experimental valida-
tion (theoretically, only possible with human data) and the cycles of
improvement inherent to the modeling effort3 (Fig. 2). From a drug
discovery point of view, any of the successes to date could be consid-
ered anecdotal and until a given model shows a track record of success-
ful prediction in humans, it will be risky to rely on it for development
decisions. For the foreseeable future, modeling predictions will likely
be one of many inputs into the decision making process in the phar-
maceutical industry.

Using complex cell systems to assay and model biology
Pathway modeling as yet remains too disconnected from systemic dis-
ease biology to have a significant impact on drug discovery. Top-down
modeling at the cell-to-organ and organism scale shows promise, but
is extremely dependent on contextual cell response data. Moreover, to
bridge the gap between omics and modeling, we need to collect a 
different type of cell biology data—data that incorporate the complex-
ity and emergent properties of cell regulatory systems and yet ideally
are reproducible and amenable to storing in databases, sharing and
quantitative analysis.

At one extreme, responses of human tissues themselves can be
probed ex vivo, an approach that, even with limitations in terms of
availability and reproducibility of human tissues, has proven useful for
validating selected compounds and targets25. Highly reproducible or
even automated approaches to cell biology, however, seem more likely
to contribute to the large-scale compound and gene function analyses
desired by industry and required as a basis for modeling efforts.
Indeed, high-throughput cell-based screening systems, often relying
on reporter assays and cell lines, are being used effectively by many
companies to identify components of pathways26, screen for active
compounds27 and even to profile drugs based on their effects on path-
way or simple stimulus-response readouts28,29. However, these assays
are generally designed to isolate individual pathways and to minimize
biological complexity and thus neither take advantage of, nor provide
insight into, emergent properties of cell systems. This ‘systematic bio-
logy’ focus on simplified pathways is thus to be distinguished from the
‘systems biology’ focus on complexity and emergent properties.

At the same time, some groups are beginning to appreciate the
importance of emergent properties in drug development. For instance,
researchers at CombinatoRx (Boston, MA, USA) search for novel
combination therapies by taking advantage of two stimuli (phorbol
myristate acetate, an activator of the protein kinase C cascade, and 
ionomycin, a stimulator of Ca2+ dependent signaling) that turn on
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Validation

Traditional ex vivo studies
Animal models
Clinical studies

No

YesModel is
predictive

Component level
data

Theory/modeling

System-level
response data

Gene and protein
expression

Physical interactions

Defines functional 
network architecture

Omics Literature

BioMAP
analyses

In silico
model

Figure 2 Development cycle of integrated in silico models using component
level and system response data. Integrated models of disease can be genera-
ted using data from the literature as well as protein expression and interac-
tion data sets, potentially informed by predictions of functional network
organization and cell responses based ideally on complex human cell-based
assays (e.g., see Fig. 3). Models are iteratively tested and improved by
comparison of predictions with systems (cell, tissue or organism) level
responses measured experimentally through traditional assays or from pro-
files generated from complex, activated human cell mixtures under a set of
different environmental conditions. Component level ‘omics’ data can pro-
vide a scaffold, limiting the range of possible models at the molecular level.
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Figure 3 Leveraging complexity in cell systems biology for drug discovery: biologically multiplexed activity profiling (BioMAP) applied to gene function, network
architecture and drug activity relationships. (a) Primary cells (e.g., endothelial cells and/or blood lymphocytes) are combined and exposed to stimuli (e.g.,
cytokines, growth factors or chemical mediators) in combinations relevant to the disease biology of interest (e.g., inflammation). Readouts used to measure
system responses can be proteins, activated states of proteins, genes or other cellular constituents or properties selected for disease relevance (e.g., cytokines,
growth factors, adhesion receptors, which are the ultimate mediators of cellular communication and function in disease) and for responsiveness to environmental
and pharmacologic inputs (information content). Perturbations to the parallel systems define the biological activity profiles of interrogating drugs or genes. The
combination of multiple cell types and multiple pathways activated elicits complex network regulation and emergent properties that enhance the sensitivity and
ability of the systems to discriminate unique drug and gene effects. (b) Several complex human cell ‘systems’ (cells or cell combinations in disease-relevant
environments) are interrogated with genes (via overexpression or siRNA) or drugs of interest and the effects on the levels of selected protein readouts are
determined, generating a profile that serves as a multisystem signature of the function of the test agent. Statistical measures of profile similarity (i.e., do
particular agents induce the same multisystem response?) can be used to cluster genes or drugs by function, and to generate graphical representations of their
functional relationships with each other28,29. As examples, clustering of profiles induced by gene overexpression (bottom left) reveals key pathway relationships
(e.g., Ras/MAPK, phosphatidyl inositol 3-kinase (PI3K), interferon-γ (IFN-γ), and NF-κB-associated clusters) as well as pathway–pathway interactions in signaling
networks controlling endothelial cell responses in the context of different inflammatory cytokines32. Clustering of drug-induced profiles from inflammatory model
systems (comprising activated combinations of endothelial cells and peripheral blood mononuclear cells) detects and discriminates the activities of most known
modulators of inflammation as well as a surprising array of other drug targets and pathways, including for example glucocorticoids, cytokine antagonists, and
inhibitors of HMG-CoA reductase, calcineurin, inosine monophosphate dehydrogenase, phophodiesterases, nuclear hormone receptors, phosphatidyl inositol 3
kinases, heat shock protein 90, casein kinase 2, janus-activated kinases, and p38 MAPK among others (illustrated in upper right; drugs are colored by mechani-
stic class)28,30. Drugs specific for a common target (circled in black) or for targets in a common pathway (circled in red) cluster together, but compounds having
different off target activities are readily detected (e.g., the profiles of three JAK inhibitors with known secondary activities; asterisks). Clustering of activity profiles
from lead chemical series can define compound-specific structure-activity relationships for lead optimization (lower right; different analogs are color coded; circle
size reflects concentration). In the example shown, BioMAP clustering defines two functional activity classes among structurally related p38 MAPK inhibitors.
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multiple pathways in primary cells to search for pairs of compounds
that exhibit antagonism (e.g., to tumor necrosis factor (TNF)–α secre-
tion from activated T cells) when combined, but not when used
singly28. Elsewhere, Rosetta Inpharmatics (Seattle, WA, USA) has
measured thousands of output genes in yeast, using the gene response
profiles resulting from genetic or chemical (drug) perturbations to
determine how genes that effect growth fit into pathways12 and to
reveal the mechanism(s) of action of compounds29. These experimen-
tal approaches have begun to harness the power of systems biology, but
the systems studied remain intentionally simple, focusing on only a
few inputs or outputs (CombinatoRx) or a single physiologic state in a
model organism (Rosetta). Complexity is a byproduct, not a product
of design of these approaches.

Complexity and emergent properties in biology derive from several
features: first, complex inputs that stimulate multiple pathways; sec-
ond, multiple outputs that are integrated network responses to the
inputs; third, interactions between multiple cell types; and fourth,
multiple contexts and environments for each cell type or combination
of cell types. The drug discovery industry has invested billions of dol-
lars in technologies to evaluate outputs, but to incorporate disease-
relevant complexity into drug discovery, intentional efforts must also
be made to study cells in combination to mimic cell-cell interactions
critical to in vivo regulatory networks and to assay cells in different
complex environmental contexts (in which different combinations of
pathways are activated). Parallel context or ‘multisystem’ analysis is
important because proteins and pathways have evolved to integrate
inputs and outputs from multiple contexts, so that to understand the
effects of a drug (or target), data must be derived from cell responses in
multiple environments.

Our group at BioSeek (Burlingame, CA, USA) has developed
human cell–based assays that intentionally incorporate complexity at
multiple levels, using parallel interrogation of standardized cell ‘sys-
tems’ (cells plus environments) designed to mimic physiological com-
plexity by including one or more primary cell types as well as
combinations of cells and active pathways (Fig. 3a). Cell systems are
engineered to embody disease-relevant responses for biological func-
tion analyses, modeling and drug discovery. For example, a panel of
just four cell systems (combinations of endothelial cells and blood
mononuclear cells in four different complex inflammatory environ-
ments) was found to embody complex biology reflecting distinctive
contributions of many pharmacologic targets relevant to inflam-
mation30,31. Profiles made up of as few as 24–40 protein readouts
(including cytokines, chemokines, adhesion receptors and other
inflammatory mediators) used to assess the responses of these com-
plex systems are able to discriminate and classify most of the pathways
and mechanisms effected by known modulators of inflammation,
as well as a surprising array of other drugs and pathways tested30,31

(Fig. 3b). Importantly, the profiles generated from these complex, acti-
vated cell mixtures are reproducible, allowing archiving in databases
and automated searching and analyses by profile similarity or other
characteristics (e.g., effects on key disease-relevant parameters).

This approach, termed biologically multiplexed activity profiling
(BioMAP), has been successfully employed in model studies suggest-
ing its applicability to several stages of the drug discovery process
(Table 1). For target identification and validation, informatics
approaches based on the similarity of database-stored multisystem
profiles have been shown to rapidly associate gene or drug activities
with known (or novel) pathways, and to predict functional pathways
and network interactions32 (Fig. 3b). Multisystem profiles induced by
gene overexpression in endothelial cells in four different cytokine
environments (in essence, multisystem signatures of gene function)

automatically clustered into groups that reflected known pathway rela-
tionships with surprising fidelity32. Moreover, graphical representa-
tion of function similarity relationships (Fig 3b, lower left panel) point
to unique roles for two gene products, MyD88 and IRAK, in mediating
interactions between the nuclear factor (NF)-κB and Ras/mitogen-
activated protein kinase (MAPK) pathways. MyD88, previously
known to signal via NF-κB, was subsequently confirmed in biochemi-
cal studies to trigger the MAPK pathway as well, which in turn inhib-
ited NF-κB activation in a negative feedback loop activated by IL-1β
but not TNF-α32. Clustering multisystem response profiles, in which
the systems are designed to capture emergent properties, can thus help
define the functional architecture of signaling networks, information
important (in conjunction with conventional data sets) for designing
and testing computational models.

For compound characterization, the limited data sets, automation
and broad functional coverage may make profiles generated from
complex, activated cell mixtures an efficient way to screen focused
libraries for effects on complex, disease-relevant biology and, more
importantly, to prioritize hits from conventional high-throughput
screening. In model studies, we have used profiles in four systems to
classify hits and leads by their biological activities, to identify com-
pounds with off-target activities (which may be desirable or undesir-
able), to distinguish ‘well-behaved’ lead series displaying consistent
biological responses and to monitor structure-function relationships
as a guide to lead optimization31 (Fig. 3b, lower right panel).

An additional strength of the multisystem approach is that parallel
systems can be designed to capture a wide range of elicited (disease-
relevant) biological and pathway activities; thus, the effects of drugs or
genes can be assessed simultaneously for complex biological responses
relevant to many different diseases and can be used to screen for novel
therapeutic indications. (This contrasts with most modeling efforts
and even animal or clinical trials, which are typically designed to
address a single disease target.) Complex cell systems models of
inflammation (Fig. 3), for example, readily detect the activities of
3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors
(e.g., statins) on inflammatory signaling30. This prompts the inter-
esting question of whether inclusion of complex biological systems
analyses in the development of statins could have accelerated the 
discovery of their potent role in autoimmune and inflammatory 
disorders33?

Omics could and certainly should be applied to cell systems
designed to incorporate meaningful biological complexity. However,
as indicated by studies by our group, highly informative functional sig-
natures for gene and drug effects can be generated using very small
numbers (tens) of biologically significant parameters, when these are
assayed within several different complex cell and environment combi-
nations. This appears to bear out the prediction that biological com-
plexity encodes useful information about drug and protein function,
and suggests that it can be leveraged for ‘smarter, faster, cheaper’
industrial-scale functional profiling.

From the practical near-term perspective, these approaches present
an opportunity to integrate systems biology more efficiently and cost
effectively throughout the drug discovery process. From a fundamen-
tal perspective, databases of such quantitative human cell biological
responses to drugs and gene alterations, under standardized and
reproducible conditions designed to embody disease-relevant com-
plexity and capture emergent properties, are likely to be useful in pre-
dicting the functional architecture of complex regulatory networks
and will provide an essential bridge for integration of omics data into
in silico models of cell systems behavior, as well as a testing ground for
these models as they develop (Fig. 2).
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P E R S P E C T I V E

Conclusions
During drug development, million-dollar decisions are (and must be)
routinely made using flawed criteria based on incomplete biological
knowledge: for example, targets are prioritized because they are upreg-
ulated at the gene level in disease (even though many of our best his-
torical targets are not); compounds are selected to be biochemically
specific (though many of our most effective drugs are not); animal
models are considered essential (although these are known to be poor
predictors of clinical success). Better biology, preferably more relevant
to human disease and capable of being integrated into the drug disco-
very process, is sorely needed to inform decision-making. Although
the systems biology approaches outlined here are in their infancy, they
are already contributing to meaningful drug development decisions by
accelerating hypothesis-driven biology, by modeling specific physio-
logic problems in target validation or clinical physiology and by pro-
viding rapid characterization and interpretation of disease-relevant
cell and cell system level responses.

Although these approaches are currently being pursued by separate
laboratories and companies, it is clear that they are complementary
and that ultimately they must be integrated for systems biology to
achieve its potential. An analogy can be drawn to the genome project,
in which multiple individual efforts contributed technology and infor-
matics approaches that eventually enabled a concerted ‘big science’
push to sequence the genome. However, whereas the linear output of
the genome project was easily standardized and archived, the multidi-
mensional and multivariate nature of biological function and cell bio-
logy studies presents an extraordinary informatics and even social
challenge, since standardization of experimental design and data are
essential before a ‘big science’ approach to systems biology can be 
envisioned. Markup languages for gene expression data, emerging
ontologies for sharing and integrating different kinds of omic and
conventional biological data4 and the introduction of standardi-
zed high-throughput systems biology and associated informatics
approaches represent important first steps on this path.
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