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Summary
Objectives: To review the current state of the art in computational
methods for the analysis of DNA microarray data.
Methods: The review considers methods of microarray data
collection, transformation and representation, comparisons and
predictions  of gene expression  from the data, their mechanistic
analysis, related systems biology, and  the application of clustering
techniques.
Results: Functional genomics approaches have greatly increased the
rate at which data on biological systems is generated, leading to
corresponding challenges in analyzing the data through advanced
computational techniques .  The paper compares and contrasts the
application  of computational clustering for discovery, comparison,
and prediction of gene expression classes,  together with their
evaluation and relation to mechanistic analyses of biological
systems.
Conclusion: Methods for assaying gene expression levels by DNA
microarray experiments produce considerably more data than other
techniques, and require a wide variety of computational techniques
for identifying patterns of expression that may be biologically
significant. These will have to be verified and validated by
comparison to results from other methods, integrated with other
systems data, and provide the feedback for further experimentation
for testing mechanistic or other biological hypotheses.
Haux R, Kulikowski C, editors. IMIA Yearbook of Medical Informatics
2006. Methods Inf Med 2006; 45 Suppl 1: S91-103.
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Overview
The genome project has fundamentally
changed the way in which we approach
questions in biology, but not in the
manner that many of us had envisioned.
While genome sequences and prelimi-
nary gene catalogues have been useful,
they have not revolutionized our under-
standing, for example, of the link be-
tween genotype and phenotype or the
mechanisms governing an organism’s
growth and development. It has been
the technology that the genome project
has enabled, rather than the data it has
produced, that has the most profound
impact on our conduct of biological re-
search. In particular, functional genom-
ics approaches, such as DNA micro-
arrays, proteomics, and metabolomics
have greatly increased the rate at which
we can generate data on biological sys-
tems, allowing us for the f irst time to
begin to observe on a molecular level
the holistic response of an organism to
a particular stimulus.
As microarrays and other technologies
have become more commonplace, the
challenges associated with collecting,
managing, and analyzing the data from
each experiment have increased sub-
stantially. Increasingly robust labora-
tory protocols, falling prices for com-
mercial platforms, and an improved
understanding of the intricacies of ex-
perimental design all have combined to
drive the field to more complex experi-
ments, generating enormous amounts
of data. Just a few years ago, microarray

studies typically included on the order
of 10 hybridization assays; now, stud-
ies tend to have 100 or more such as-
says. The goal of this chapter is to
present an overview of some of the is-
sues associated with analyzing such data
to extract meaningful biological results
from the data.

Microarray Data Collection,
Transformation, and
Representation
A DNA microarray experiment begins
with the choice of an appropriate ex-
perimental platform and this dictates a
good deal of how an experiment is de-
signed and analyzed. One key element
in any microarray analysis is under-
standing which genes are represented
by the individual probes. With “com-
plete” reference genomes, one would
imagine that this is a solved problem,
but in most instances, the genome se-
quence and its annotation is still evolv-
ing and we do not yet have a com-
prehensive catalogue of the genes and
their variants. However, this and issues
of data management are beyond the
scope of what we will cover in this chap-
ter. Instead we will assume that we have
selected an array platform and extracted
expression data from a series of hy-
bridization assays representing a group
of biologically interesting samples.
The starting point for understanding
how one uses DNA microarrays for
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classification is to understand how the
data are collected and represented. The
underlying technology is relatively
straightforward. Gene-specif ic probes,
representing thousands of individual
genes, are arrayed on an inert substrate
and used to assay levels of gene expres-
sion in a target biological sample. RNA
is extracted from tissues of interest, la-
beled with a detectable marker (typi-
cally a fluorescent dye), and allowed
to hybridize to the arrays with individ-
ual messages hybridizing to their com-
plementary gene-specific probes on the
array. Stoichiometry dictates that the
relative quantity of nucleic acid bound
to any probe should be a function of
concentration. A more intense signal is
caused by a higher degree of hybridi-
zation which, in turn, implies higher
expression levels. Following hybridiza-
tion and washing, the arrays are im-
aged using a confocal laser scanner and
the relative fluorescence intensity for
each gene-specif ic probe is extracted
as a measure of the expression level for
that gene. The actual value reported
depends on the microarray technology
platform used and the experimental
design. For Affymetrix GeneChips™,
where each sample is hybridized to an
individual array, expression for each
gene is measured as an “Average Dif-
ference” that represents an estimated
expression level, less nonspecific back-
ground. For two-color arrays, such as
cDNA and Agilent arrays, assays typi-
cally compare paired samples and re-
port expression as the logarithm of the
ratio of a query sample to a control (the
log-ratio). Regardless of the approach
or technology, the fundamental data
used in all subsequent analyses are the
expression measures for each gene in
each experiment.
This expression data is typically repre-
sented as an “expression matrix” in
which each row represents a particular
gene and each column represents a spe-

cific biological sample. In this repre-
sentation, each row is a “gene expres-
sion vector” where the individual en-
tries are its expression levels in the
samples assayed and each column is a
“sample expression vector” that records
the expression of all genes in that sam-
ple. While we will focus on classif ica-
tion using DNA microarray data, it
should be noted that any data which can
be placed into this “genes by samples”
expression matrix format (for example .
“proteins by samples”) can be analyzed
using exactly the same techniques.
Following collection, the data are gener-
ally normalized to facilitate compari-
son between individual hybridization
assays to compensate for differences in
labeling, hybridization, and detection
efficiencies. There are a number of ap-
proaches to data normalization, and
again the approaches used depend on
platform and the assumptions made re-
garding the biases in the data [1, 2, 3,
4, 5]. Further, a number of f iltering
transformations are often applied to the
data using a variety of statistical ap-
proaches that, for example, eliminate
genes that have minimal variance across
the collection of samples or those that
fail to provide data in a majority of the
experiments. The value of these f ilter-
ing transformations is that they reduce
the complexity of the dataset by elimi-
nating those genes that are not likely to
contribute to either class discovery or
classification.
It is important to note, however, that
the choice of normalization and filter-
ing transformations can have a profound
effect on the results that are obtained
[6]. Normalization adjusts the fluo-
rescence intensities on each array and
can therefore change the relative diffe-
rence observed between samples – the
fold change. While some normalization
is generally necessary to compensate
for systematic errors that are introduced
during the measurement process, over-

normalizing the data can distort the fi-
nal results. Similarly, the manner in
which the data are filtered can produce
very different results. All statistical tests
that are applied rely on assumptions
regarding the nature of the variance in
the measurements. Different statistical
tests applied to the very same data set
can often produce different (but gener-
ally overlapping) sets of signif icant
genes and the appropriate means of
dealing with these “high dimensional”
datasets in which there are often more
measurements (genes) than samples is
an area of active research and debate.
DNA microarray experiments can be
broadly placed into four primary
groups: class discovery, class compari-
son, mechanistic studies, and class
prediction. Each generally has a very
different f inal goal that can affect the
experimental design and analysis, al-
though any one experiment may yield
novel insights into all four areas and
the most useful newly discovered classes
are those with a clear mechanism asso-
ciated with them that can then be used
to classify future samples.
Once the data have been collected, nor-
malized, and f iltered in some way, the
real analysis begins. There are many
possible experimental designs and
many approaches to data analysis that
build on trying to answer the funda-
mental questions posed in each experi-
ment. Table 1 summarizes the broad
classes of experiments that one might
perform and some of the software tools
that are useful for such analyses; a more
detailed discussion of these data min-
ing approaches follows immediately
below.

Class Discovery
Class discovery analysis is generally the
f irst step in any genomics experiment



IMIA Yearbook of Medical Informatics 2006

Computational Approaches to Analysis of DNA Microarray Data

93

Application Algorithm References 

hierarchical clustering [7] [8] [9] 
k-means clustering [10] 
self-organizing maps [11] [12] [13] 
self-organizing trees [14] 
Relevance networks [15] 
force-directed layouts [16] 

Class Discovery 

Principal component analysis [17] 

t-test [65] 
SAM [22] 

Class Comparison 

analysis of variance (ANOVA) [66] 

k-nearest neighbors (kNN) [33] 
Weighted voting [23] 
artificial neural networks (ANNs) [24] [25] 
discriminant analysis [26] [27] [28] [29] 
classification and regression trees (CART) [30] 

Class Prediction 

support vector machines (SVM) [31] [32] 

EASE [36] 
MAPPFinder [34] 
GOMiner [35] 
Cytoscape [67] 
Boolean Networks [37] [38] [39] 
Probabilistic Boolean Networks [40] [41] [42] [43] 

Mechanistic Analysis 

Bayesian Networks [38] [44] [45] [46] [47] 

 

because it takes an unbiased approach
to looking for new groups in the data.
For example, one might examine a
group of cancer patients to see if their
expression profiles allow them to be
placed into distinct groups without us-
ing any prior knowledge of their dis-
ease progression, outcome, or their re-
sponse to treatment. After f inding new
groups based on expression profiles, the
challenge then becomes f inding a link
to some clinical or biological factor
that can explain the difference.
Class discovery analyses rely on un-
supervised data analysis or clustering
methods to explore expression patterns
that exist in the data and these are of-
ten among the first techniques used in
the analysis of any microarray dataset.
The question we are asking in a class

discovery experiment is “Are there un-
expected but biologically interesting
patterns that exist in the data?” Unsu-
pervised methods do not use the sample
classification as input – they do not take
into account, for example, whether the
samples come from ALL or AML pa-
tients. They simply group samples to-
gether based on some measure of simi-
larity between then. Two of the most
widely used unsupervised approaches
are hierarchical clustering [7, 8, 9] and
k-means clustering [10].
There are many approaches that have
been applied to unsupervised analysis,
including self-organizing maps (SOM)
[11, 12, 13], self-organizing trees
(SOTA) [14], relevance networks [15],
force-directed layouts [16], principal
component analysis [17], and others.

Fundamentally, each of these uses some
feature of the data and a rule for deter-
mining relationships to group genes (or
samples) that share similar patterns of
expression. In the context of disease
analysis, all of these can be extremely
useful for identifying new subclasses
in the data – provided that the classes
are reproducible and that they can be
related to other clinical data. All of these
algorithms will divide data into clus-
ters, but whether the clusters are mean-
ingful requires expert input and anal-
ysis. Critical assessment of the results
is essential. There are anecdotal reports
of clusters being found that separate
data based on the hospital in which the
sample was collected, the technician
who ran the microarray assay, or the
day of the week on which the array was
run. Clearly arrays can be very sensi-
tive; one just has to work to minimize
unnecessary variability and then to fil-
ter the biological signal from the noise.
However, recent reports have suggested
that adherence to good, standard labo-
ratory practices and careful analysis of
data can lead to high quality, reproduc-
ible results where the biology of the
system under study drives the expres-
sion profiles that are observed [18, 19,
20, 21]. While clustering approaches
can be useful in such studies, in gen-
eral the classification of new samples
based on their expression profiles gen-
erally relies on the application of class
comparison methods followed by the
development of robust and reliable clas-
sif ication algorithms.

Class Comparison
Class comparison experiments are fo-
cused on comparing different pheno-
typic groups (treated and control
groups, disease tissue versus normal, or
two compounds affecting the same cell

Table 1   A wide range of algorithms have been developed to facilitate analysis of genomic expression datasets. Although most approaches have been
applied in the context of gene expression microarray data, the algorithms themselves are generally applicable to any expression-based data.
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type but through different mechanisms)
in order to discover the genes and their
expression patterns that best distinguish
the groups. The starting point in such
an experiment is the assumption that
one knows the classes that are repre-
sented in the data, a logical approach
to data analysis is to use the informa-
tion about the various classes in a super-
vised fashion to identify those genes (or
proteins or metabolites) that can be used
to distinguish the various groups. One
starts by assigning samples to particu-
lar biological classes based on some
objective criteria. For example, the data
may represent samples treated with two
different drugs known to elicit differ-
ent responses or disease and normal tis-
sues. The first question to be asked is:
“Which genes best distinguish the vari-
ous classes in the data?” The goal at
this stage is to find those genes that are
most informative for distinguishing the
samples based on class.
Fortunately, there are a wide variety of
statistical tools that can be brought to
bear on this question, including t-tests
(for two classes) and analysis of vari-
ance (ANOVA; for three or more
classes) that assign p-values to genes
based on their ability to distinguish
between groups. One concern with
these statistical approaches is the pro-
blem of multiple testing. Simply put,
in an array with 10,000 genes, apply-
ing a 95% conf idence limit on gene
selection (p = 0.05) means that, by
chance, one would expect to f ind 500
genes as signif icant. Clearly, we need
to be more stringent in our gene selec-
tion to avoid potential problems with
these. However, the important thing to
remember is that what these methods
provide are a means for prioritizing
genes for further analysis. It should be
noted that there are other widely used
approaches, such as Signif icance
Analysis of Microarrays (SAM) [22]

which uses an adjusted t-statistic (or F-
statistic), modif ied to correct for over-
estimates arising from small values in
the denominator, along with permuta-
tion testing to estimate the False Dis-
covery Rate (FDR) in any selected sig-
nif icant gene set.
Ultimately, the result of such an analy-
sis is a collection of genes that are
deemed signif icant for distinguishing
the biological groups being compared
in the analysis. The challenge at this
point is generally to place these genes
into a biological context. This in many
ways is the key unsolved problem for
functional genomics: if we knew what
each of the individual genes, proteins,
and metabolites did, as well as how ge-
netic variation and other factors play a
role in producing a particular outcome,
there would be no need to use function-
al genomic approaches. Rather, one
could simply focus on those key ele-
ments that are causally involved in any
process and use those to determine
whether a particular compound is likely
to produce a specific response.
Having selected a set of genes whose
expression patterns are useful for distin-
guishing two or more classes of samples,
such as individuals who develop a par-
ticular disease and matched controls
who do not, one can either use them as
a starting point for mechanistic studies
or attempt to classify new samples
based on their expression prof iles.

Class Prediction
Class prediction experiments attempt to
go beyond the simple clustering ap-
proaches used in class discovery experi-
ments to use catalogued expression pro-
files as a means of predicting to which
group a new sample belongs based on
its unique profile. The question we ask
in such an experiment is “Can I find a

particular pattern of expression and an
appropriate mathematical rule that al-
lows me to predict what group my
sample belongs to?” Typically one starts
out with a well characterized set of
samples and their associated phenotypes
and through a careful comparison of
the expression prof iles f inds genes
whose patterns of expression can be
used to distinguish the various pheno-
typic groups under analysis. Class pre-
diction approaches then attempt to use
such a set of “significant” genes to de-
velop a mathematical rule (or com-
putational algorithm) that can use the
expression prof iling data and take any
one sample and assign it to its particu-
lar group. The goal, however, is not to
merely separate the samples, but to cre-
ate a rule (or algorithm) that can serve
to predict the phenotype based on ex-
pression prof iling data alone.
When developing a classif ication ap-
proach, the mathematical rules for ana-
lyzing new samples are encoded in a
classification algorithm, and there are
a wide range of algorithms that have
been used for this purpose, including
weighted voting [23], artif icial neural
networks (ANNs) [24, 25], discrimi-
nant analysis [26, 27, 28, 29], classifi-
cation and regression trees (CART)
[30], support vector machines (SVM)
[31, 32], and k-nearest neighbors (kNN)
[33], as well as a host of others. Essen-
tially each of these uses an original set
of samples, or training set, to develop
a rule that takes a new test sample from
a test set and uses its expression vector
sample, trimmed to a previously iden-
tified set of classification genes, to place
this test sample into the context of the
original sample set, thus identifying its
class.
There is great interest in classification
approaches and one example is in its
application to toxicology. While cur-
rent toxicological assays rely on large
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exposures and analysis of specif ic tis-
sues, one could envision developing a
large enough database of a broad
enough array of compounds that signa-
tures indicative of specif ic responses
could be identified at lower doses and
even, potentially in tissue culture mod-
els, providing a testable starting hypo-
thesis for target tissues or putative
modes of action for a particular toxic
compound. This could have wide-rang-
ing implications for toxicological
screening identifying potential un-
wanted side effects at an early stage in
drug development, suggesting new po-
tential uses for failed compounds (as
some toxic effects can have therapeu-
tic benefits – for example, in cancer
treatment), and identifying environ-
mental compounds that may have some
toxic properties so that these can be
further evaluated and verif ied.

Mechanistic Analysis
While class prediction analysis may tell
us what group a particular sample be-
longs to, it does not necessarily shed
light on the mechanism underlying a
particular response. Moving from pre-
dictive signatures to mechanistic under-
standing often relies on additional work
using standard methods to translate
functional genomics-based hypotheses
to validated f indings. Bioinformatics
often plays a key role in developing
those hypotheses with additional data
that can be used in its interpretation,
including gene ontology terms (which
assign gene products – proteins – to one
or more molecular functions, biologi-
cal processes, and cellular locations),
databases of known pathways, genetic
mapping data, structure activity
relationships, dose response curves,
phenotypic or clinical information, the
genome sequence and its annotation,

and the published literature, among oth-
ers. A number of software tools have
been developed to facilitate this analy-
sis, including MAPPFinder [34],
GOMiner [35] and EASE [36], al-
though these only provide hints as to
possible mechanisms that might be in-
volved in producing any particular ex-
pression prof ile. At present, recon-
structing putative networks requires a
good deal of user interaction as there is
no universal way to connect the expres-
sion of genes, proteins, or metabolites
to functionally relevant pathways lead-
ing to selected outcomes.
Recently, there have been attempts to
predict networks based on observed
expression prof iles and using a range
of techniques, including Boolean Net-
works [37, 38, 39], Probabilistic Bool-
ean Networks [40, 41, 42, 43], and
Bayesian Networks [38, 44, 45, 46, 47],
with variations on all of these ap-
proaches. These models treat individual
objects, such as genes or proteins, as
“nodes” in a graph, with edges connect-
ing them representing their interactions
and a set of rules for each edge that
determines the strength of the inter-
action and whether a particular response
will be induced. To date, these ap-
proaches have met with some success,
but a great deal of work is necessary to
convert these models from descriptive
to predictive. In metabolic profiling,
techniques that use monitoring of meta-
bolic f lux and its modeling [48, 49]
also hold hope of providing predictive
models.

From Genes to Systems
The advent of global functional genom-
ics technologies, and the data they pro-
vide, has opened the possibility of cre-
ating quantitative, predictive models of
biological systems. This approach,

dubbed “Systems Biology,” attempts to
bring together data from many differ-
ent domains, such as DNA microarray
gene expression data and metabolic flux
analysis, and to synthesize these to pro-
duce a more complete understanding of
the biological response of a cell, or-
gan, or individual to a particular stimu-
lus. Ultimately, this systems-level
understanding of organismal response
and its relationship with the develop-
ment of a particular phenotype is the
goal of functional genomics. However,
the best efforts to date have allowed the
prediction of “networks” of potentially
interacting genes that have little rela-
tion to the biochemical or signal trans-
duction pathways we understand medi-
ate cellular response. Attempts to model
metabolic flux, even in simpler organ-
isms like yeast and E. coli, can, at best,
provide only rough approximations of
the real responses and then only under
carefully controlled conditions. How-
ever, progress in these areas is promis-
ing and additional research will con-
tinue to advance the f ield and its
applications.

Mechanistic Versus Non-
Mechanistic Studies
The most common question in genomic
expression studies is whether a technol-
ogy will allow us to predict potential
outcomes from exposure to a particular
substance. When addressing this ques-
tion, classif ication methods are most
commonly applied. However, the genes,
proteins, or metabolites that are identi-
f ied as the most signif icant for distin-
guishing classes of treatment are often
not easily interpreted causally or
mechanistically with respect to the
underlying phenotype or mode of
action.
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Ultimately, finding predictive elements
that can be functionally linked to out-
come may provide insight into possible
therapeutic interventions. However, the
failure to provide a biological inter-
pretation does not diminish the poten-
tial predictive utility of well-established
biomarkers. It should be noted that
there are many clinical examples of bio-
markers of unknown function, such as
PSA or CEA, that are extremely use-
ful as diagnostic or prognostic markers
for various diseases. It may be more
useful to consider gene lists emerging
from class prediction experiments as
nothing more that sets of biomarkers
with clinical applications; if they have a
biological interpretation, this is simply a
bonus.
Having laid out the basics of microarray
experiments, it is worthwhile to look
at some examples of techniques used
to analyzing gene expression data.

Expression Vectors
The ultimate goal of a microarray ex-
periment is to compare patterns of ex-
pression across multiple samples hy-
bridized to a particular array. One is
typically looking for patterns of gene
expression that correlate with the bio-
logical states of the system being ana-
lyzed or searching for genes that have
“similar” patterns of expression across
multiple samples. For each gene, the
process begins by defining an “expres-
sion vector” that represents its location
in “expression space.” In this view of
gene expression, each hybridization rep-
resents a separate distinct axis in space,
and the expression value measured for
that gene in that particular hybridiza-
tion represents its geometric coordinate.
For example, for three hybridizations
on a two-color array, the log

2
(ratio) for

a given gene in hybridization 1 is its x

coordinate, the log
2
(ratio) in hybridi-

zation 2 is its y coordinate, and the
log

2
(ratio) in hybridization 3 its z coor-

dinate. In this way, all of the informa-
tion about this gene can be represented
by a point in xyz expression space. A
second gene, with nearly the same
log

2
(ratio) values for each hybridi-

zation will be represented by a (spa-
tially) nearby point in expression
space; a gene with a very different
pattern of expression will be far from
our original gene. The generalization
to a greater number of hybridizations
is straightforward, although harder to
draw; the dimensionality of expression
space grows to be equal to the number
of hybridizations. In this way, expres-
sion data can be represented in m-
dimensional expression space, where
m is the number of hybridizations, and
where each gene expression vector is
represented as a single point in that
space. It should be noted that one can
use a similar approach to representing
each hybridization assay using a
“sample vector” consisting of the ex-
pression values for each gene; these
def ine a “sample space” whose dimen-
sion is equal to the nu mber of genes
assayed in each array.

Identifying Differentially
Expressed Genes – the t-test
A common goal in DNA microarray
experiments is to search for genes that
distinguish the various biological classes
in any experiment. Even if data min-
ing analysis is going to be performed
using one or more of the widely-used
clustering methods [7, 9, 11], it is still
extremely useful to reduce the dataset
to those genes that are best distinguish
between the sample classes. The earli-
est microarray papers used a simple
“fold change” approach to f ind differ-

ences, using the assumption that
changes above some threshold, typically
two-fold, were biologically significant.
A simple yet more sophisticated and
widely-used approach to the two class
experiment is to use Student’s t test to
assess whether a gene is differentially
expressed between biological condi-
tions. The basis of this test is the t statis-
tic, which is an assessment of signal-
to-noise ratio for the particular gene in
question, comparing its expression
measure for the two conditions under
study. Consider two conditions, A and B.
If we use         to denote the log

2
(ratio)

that we measure in assay i in condition
A, then its average value across N

A

measurements is simply

and the standard deviation of the mean
is

With these definitions, one can def ine
the t statistic as

Clearly, a large value for the t statistic
indicates that the populations repre-
senting measurements of a gene for
conditions A and B are well separated
and, consequently, that the gene is dif-
ferentially expressed between those
conditions. The converse is true for a
small value of t. But what actually is
meant by “large” and “small,” and can
t be used to estimate how likely that a
gene is differentially expressed be-
tween conditions?
There are a number of approaches to
addressing these questions. The first is
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to use well-established properties of the
t distribution for normally distributed
random variables. This allows for the
calculation of a probability, or p value
that the two distributions of the expres-
sion measures for a gene under condi-
tions A and B overlap for a given value
of t. Although the t statistic is based
on the assumption that variability in
these measurements follows a normal
distribution and there is evidence to
suggest that this is not necessarily the
case for gene expression, the t test is
well known to be quite robust to vio-
lations of the assumption of normal-
ity. The second approach is to use the
properties of the expression measures
themselves to estimate the significance
of a given value of t by performing a
permutation test. Permutation testing
randomly swaps expression level mea-
surements between groups A and B, up
to the total number of unique permu-
tations that can be made. Each time, a
value for t is calculated. One then asks
how often, by chance, a value for t oc-
curs that is equal to or more than that
measured for the real data, which al-
lows an estimate to be made of the
probability that our dataset shows a sig-
nificant separation between the classes.
In biological studies, it is common to
use a p value cutoff of p ≤ 0.05, which
means that there is a 95% or more
chance that a gene’s expression levels
can distinguish between groups. Al-
though this seems like a reasonable ap-
proach, there can be problems with us-
ing strict p value cutoffs. In most
biological experiments, one measures
a small number of parameters across a
relatively large number of samples.
However, in most microarray experi-
ments, one is measuring thousands of
parameters (the expression levels of the
genes) across a relatively small num-
ber of samples, and this can lead to
the misidentif ication of genes being
differentially expressed even when

they are not—the problem of false
positives. As an example of this phe-
nomenon, known as the multiple test-
ing problem, consider the case where
10,000 distinct gene-specif ic probes
are on a given array. If a cutoff for
differential expression of p ≤ 0.05
(95% conf idence) is used, one would
expect, by chance, that 5% of the genes
represented on the array, or 500 of
them, would be identified as being sig-
nif icant. There are a number of ap-
proaches to dealing with this problem,
but it remains an area of active re-
search. For more complex experiments
with multiple classes, the use of Analysis
of Variance (ANOVA) techniques is now
standard.
Having identified a signif icant set of
genes that correlate with biological phe-
nomena, there are a variety of ap-
proaches that can be used to mine the
data, including hierarchical and k-means
clustering, Self Organizing Maps, Self
Organizing Trees, and others. There area
also a range of applications, including
the classification of biological samples
using a range of comp utational tools
such as Artif icial Neural Networks, k
nearest neighbors, regression analysis,
decision trees, support vector machines,
and others. Very often the greatest chal-
lenge in any of these approaches is the
biological interpretation of the data and
the validation of the method. Many c las-
sification approaches face the problem
of overfitting brought on by the relativ-
ely large number of genes, the smal l
number of samples, and the unknown
biological noise that must be dealt with.
Although many questions remain to be
answered, this remains an area of ac-
tive research and one that continues to
be exciting and challenging. Finally, al-
though this presentation focuses on
microarrays, the same techniques can
be used in a wide array of applications
in proteomics, metabolomics, and
other f ields.

Clustering Approaches
A useful f irst approach to the analysis
of microarray data is to use an unsuper-
vised method to explore expression
patterns of that exist in the data. Three
of the most widely used methods are
hierarchical clustering, k-means clus-
tering, and self-organizing maps. Al-
though each of these approaches will
work with any dataset, in practice they
often do not work well for large data-
sets where many of the genes do not
vary between samples. Consequently,
it is useful to first apply a statistical
filter to the data to exclude genes which
simply are not varying between experi-
mental classes. If there are no pre-de-
termined classes in the data, a useful
alternative is simply to eliminate those
genes that have minimal variance across
the collection of samples as those genes
are not changing significantly in the
dataset and are therefore the least likely
to shed any light on subclasses that ex-
ist in the sample collection.

Hierarchical Clustering
Hierarchical clustering has become one
of the most widely-used techniques for
the analysis of gene expression data; it
has the advantage that it is simple and
the result can be easily visualized [7,
9, 50]. Initially, one starts with N clus-
ters, where N is the number of genes
(or samples) to be in the target dataset.
Hierarchical clustering is an agglom-
erative approach in which single ex-
pression prof iles are joined to form
nodes, which are further joined until
the process has been carried to comple-
tion, forming a single hierarchical tree.
The algorithm proceeds in a straight-
forward manner:

1 . Calculate the pairwise distance
matrix for all of the genes to be
clustered.
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2 . Search the distance matrix for the
two most similar genes or clusters;
initially each cluster consists of a sin-
gle gene. This is the true first stage
in the “clustering” process. If several
pairs share the same degree of
similarity, a predetermined rule is
used to decide between alternatives.

3 . The two selected clusters are merged
to produce a new cluster that now
contains at two or more objects.

4 . The distances are calculated between
this new cluster and all other clusters.
There is no need to calculate all
distances since only those involving
the new cluster have changed.

5 . Steps 2-4 are repeated until all
objects are in one cluster.

There are a number of variants of hier-
archical clustering that reflect differ-
ent approaches to calculating distances
between the newly defined clusters and
the other genes or clusters:
• Single linkage  clustering uses the

shortest distance between one cluster
and any other,

• complete linkage clustering takes the
largest distance between any two
clusters, and

• average linkage clustering uses the
average distance between two
clusters.

Typically, the relationship between sam-
ples is represented using a dendrogram,
where branches in the tree are built based
on the connections determined between
clusters as the algorithm progresses. In
order to visualize the relationships be-
tween samples, the dendrogram is used
to rearrange the rows (or columns as
appropriate) in the expression matrix
to visualize patterns in the dataset.
Hierarchical clustering is often misused
to partition data into some number of
clusters without the application of any
objective criterion. Fortunately, there
are a number of approaches that can be
used to identify subgroups in the clus-
tering dendrograms. One method is to

simply use the distances calculated in
building the clusters as a measure of
the connectivity of the individual clus-
ters. As one moves up the dendrogram
from the individual elements, the dis-
tance between clusters increases. Con-
sequently, as one increases the distance
threshold, the effective number of clus-
ters decreases. An alternative approach
is to use bootstrapping or jack-knif ing
techniques to measure the stability of
relationships in the dendrogram, using
this stability as a measure of the num-
ber of clusters represented. In boot-
strapping, there are a number of ap-
proaches that can be used, but the
simplest is to use sampling of the dataset
with replacement, each time calculat-
ing a new hierarchical clustering
dendrogram and simply counting how
often each branch in the dendrogram is
recovered; a percentage cutoff on the
dendrogram sets the number of clus-
ters. In making a bootstrap estimate for
gene cluster stability, it is appropriate
to resample the collection of biologi-
cal samples while in estimating the
number of clusters in the biological
samples, one bootstraps the gene ex-
pression vectors. Jack-knif ing is simi-
lar, but instead of resampling, the ap-
propriate vectors are sequentially left
out as new dendrograms are calculated
until all vectors have been considered.
Once again, the stability of each clus-
ter is estimated based on how often a
given relationship in the dendrogram
is recovered.

One potential problem with many hi-
erarchical clustering methods is that, as
clusters grow in size, the expression
vector that represents the cluster when
calculating distance may no longer rep-
resent any of the genes within the clus-
ter. Consequently, as clustering pro-
gresses, the actual expression patterns
of the genes themselves become less
relevant. Furthermore, if a bad assign-

ment is made early in the process, it
cannot be corrected. An alternative,
which can avoid these artifacts, is to
use a divisive clustering approach, such
as k-means, to partition data (either
genes or samples) into groups having
similar expression patterns.

k-means Clustering
If there is advance knowledge regard-
ing the number of clusters that should
be represented in the data, k-means
clustering is a good alternative to hier-
archical methods [10, 51]. In k-means,
objects are partitioned into a fixed num-
ber (k) of clusters such that the clusters
are internally similar but externally
dissimilar. No dendrograms are pro-
duced, but one could use hierarchical
techniques on each of the data partitions
after they are constructed. The process
involved in k-means clustering is con-
ceptually simple, but can be com-
putationally intensive:
1 . All initial objects are randomly

assigned to one of k clusters (where
k is specif ied by the user).

2 . An average expression vector is then
calculated for each cluster and this
is used to compute the distances
between clusters.

3 . Using an iterative method, objects are
moved between clusters and intra-
and inter-cluster distances are meas-
ured with each move. Objects are
allowed to remain in the new cluster
only if they are closer to it than to
their previous cluster.

4 . Following each move, the expression
vectors for each cluster are recal-
culated.

5 . The shuffling proceeds until moving
any more objects would make the
clusters more variable, increasing
intra-cluster distances and decreasing
inter-cluster dissimilarity.

Some implementations of k-means clus-
tering allow not only the number of
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clusters to be specif ied, but also seed
cases for each cluster. This has the po-
tential to allow one to use prior knowl-
edge of the system to help define the
cluster output, such as a typical profile
for a few key genes known to distin-
guish classes of patients. Of course, the
“means” in k-means refers to the use of
a mean expression vector for each emer-
ging cluster. As one might imagine,
there are variations that also use other
measures, such as k-medians clustering.

Self Organizing Maps
A self-organizing map (SOM) is a neu-
ral network-based divisive clustering
approach [11, 12, 13]. A SOM assigns
genes to a series of partitions based on
the similarity of their expression vec-
tors to reference vectors that are de-
f ined for each partition. It is the pro-
cess of defining these reference vectors
that distinguishes SOMs from k-means
clustering. Prior to initiating the analy-
sis, the user def ines a geometric con-
figuration for the partitions, typically
a two-dimensional rectangular or hex-
agonal grid. Random vectors are gen-
erated for each partition, but before
genes can be assigned to partitions, the
vectors are f irst “trained” using an it-
erative process that continues until con-
vergence so that the data are most ef-
fectively separated:

1 . Random vectors are constructed and
assigned to each partition.

2 . A gene is picked at random and,
using a selected distance metric, the
reference vector that is closest to the
gene is identif ied.

3 . The reference vector is then adjusted
so that it is more similar to the
randomly picked gene. The reference
vectors that are nearby on the two
dimensional grid are also adjusted so
that they too are more similar to the
randomly selected gene.

4 . Steps 2 and 3 are iterated several

thousand times, decreasing the
amount by which the reference
vectors are adjusted and increasing
the stringency used to define close-
ness in each step. As the process con-
tinues, the reference vectors con-
verge to fixed values.

5 . Finally, the genes are mapped to the
relevant partitions depending on the
reference vector to which they are
most similar.

In choosing the geometric conf igura-
tion for the clusters, the user is, effec-
tively, specifying the number of parti-
tions into which the data are to be
divided. As with k-means clustering, the
user has to rely on some other sources of
information, such as principal compo-
nent analysis (PCA), to determine the
number of clusters that best represents
the available data. There are many other
approaches to partitioning the data as
noted in the class discovery section above.

Beyond Statistical
Significance and Clustering
Many analyses of microarray data reach
the stage where some collection of genes
that share similar patterns of expres-
sion has been identified. The challenge
at this stage is to attach some biological
meaning to the gene sets identified
through this process. Some approaches
use relationships identif ied by linking
genes to PubMed abstracts or associ-
ated MeSH terms [34, 35, 52, 53, 54].
Others use constraints from the bio-
logical system under analysis, such as
using genetic linkage or quantitative
trait locus (QTL) maps to narrow down
the set of signif icant genes to those
mapping to regions of the genome as-
sociated with appropriate trait [55, 56,
57, 58]. In solid tumor studies, one
might look for correlations with ge-
nome deletions or amplifications as de-
termined by comparative genomic hy-

bridization on arrays (array CGH; [59,
60]. Finally, in developmental imprint-
ing studies, gene expression may be
compared to patterns of methylation
[61, 62].
Another very attractive approach is to
use the properties of the data and the
construction of the array to look for
significant functional associations. Re-
call that one of the key elements in es-
tablishing an array platform is the an-
notation of the arrayed probe elements.
For example, imagine that 20% of the
genes on the array are annotated as be-
longing to gene ontology (GO) catego-
ries representing energy metabolism. If
this is the case, randomly selecting a
collection of “significant” genes would
most likely yield about 20% of its ele-
ments as belonging to the same energy
metabolism class. In fact, it would not
be surprising to find that 30% of the
genes in the “significant” set were en-
ergy metabolism genes; however, if the
fraction were 80%, it might suggest that
the experiment affected energy metabo-
lism with a much higher frequency than
would be expected by chance. Such in-
sight may indeed provide clues as to
the mechanisms at work in the biologi-
cal system under study.
An obvious question is whether the
probability that a given functional class
is over-represented in our signif icant
gene set can be estimated. This can be
done using the Fisher Exact Test, and
the mathematics behind the approach
are described in Box 16.3.

The Classification Problem
As mentioned earlier, some microarray
experiments do not focus on identify-
ing function, but rather on f inding
genes that can be used to group samples
into biologically or clinically relevant
classes and supervised approaches to data
analysis are particularly useful for these
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studies. One typically begins with a
priori knowledge of the groups repre-
sented in the data, although any hypo-
thesis along these lines can be further
explored using clustering techniques and
other information. With those groups, one
then asks whether there are genes that
can be used to separate the relevant
classes. For two groups of samples, a t-
test or unpaired two-class SAM are use-
ful tools while, for a larger number of
classes, ANOVA or multi-class SAM are
appropriate. Having identif ied a set of
genes that show significant differences,
one then builds a classif ication algo-
rithm that can be used to assign a new
sample to one of the classes.
There are a wide range of algorithms
that have been used for classif ication,
including weighted voting [11], artif i-
cial neural networks [24, 25], discrimi-
nant analysis [26, 27, 28, 29], classifi-
cation and regression trees [30], support
vector machines [32, 63], k-nearest
neighbors [33], and a host of others.
Essentially, each of these uses an orig-
inal set of samples – a training set – to
develop a rule that takes a new test
sample from a test set and uses its ex-
pression vector sample, trimmed to a
previously identif ied set of classif ica-
tion genes, to place this test sample into
the context of the original sample set,
thus identifying its class.
In many ways, kNN is the simplest ap-
proach to doing classification. First, one
must assemble a collection of expres-
sion vectors for our samples and assign
the samples to various experimental
classes. We will refer to these samples,
about which we have prior knowledge,
as our training set. Next, genes are se-
lected that separate the various classes
using an appropriate statistical test to
identify good classif ication candidate
genes, thus reducing the size of the
sample classification vectors. This rep-
resents a first-pass collection of classi-
fication genes. The next step is to iden-

tify and eliminate samples that appear
to be outliers. These may be important
because they possibly represent new
subclasses in our original sample clas-
sif ication set; alternatively, they may
just represent poor-quality data. The
outlying samples are identif ied by ap-
plying a correlation filter to the reduced
sample expression vectors, as follows:
1 . The Pearson correlation coeff icient

(r) is computed between a given
vector and each member of the train-
ing set; the maximum r identified is
called the r

max
 for that vector.

The vector is randomized a user-
specif ied number of times. Each
time, an r

max
 is calculated using the

randomized vector (called r*
max

),
just as in Step 1.

2 . The fraction of times r*
max

 exceeds
r

max
 over all randomizations is used

to calculate a p-value for that vector.
3 . If the p-value for a vector is less

than a user-specif ied threshold
(meaning it is well-correlated with
other samples), that vector is retained
for further analysis. Otherwise, it is
discarded.
Steps 1-4 are repeated for every
sample vector in the set.

At this point, the training set has led to
the generation of a collection of sample
vectors that represent prior knowledge
regarding the biological classes repre-
sented in the data. The next step in the
analysis involves assigning new samples
from the test set  to classes, based on
their expression vectors.
For each sample in the test set, its ex-
pression vector is reduced to include only
those genes previously identified as be-
ing signif icant for classif ication. The
distance between this reduced expres-
sion vector and the reduced expression
vectors is then computed for each and
every sample in the training set. As the
name kNN implies, some number k of
nearest neighbors is chosen from the
training set – those k vectors that have
the smallest distances from the test sam-

ple. The new test vector is then assigned
to the class most highly represented in
its k nearest neighbors. If there is a tie,
the new sample remains unclassified.

A Few Closing Thoughts
During the past few years, there have
been many discussions in the literature
on “noise” in microarray assays: dispa-
rate results arising from the use of dif-
ferent platforms, questions regarding
the validity of microarray results, and
the need to validate the findings. If one
closely examines the underlying issues,
it is clear that microarrays are no dif-
ferent than any other approach to as-
saying levels of gene expression – each
method has its own biases and limita-
tions. Microarrays simply provide much
more data than do techniques such as
quantitative RT-PCR or Northern blots,
and the likelihood of false positives and
false negatives increases as the number
of genes assayed increases – a mani-
festation of the multiple testing prob-
lem. What is underlying all of these
issues is trying to understand what can
be done with the data that emerges.
Although there are no absolute answers,
there are some overarching generaliza-
tions that can be made that will help
guide the follow-on experiments.
First, whether one is doing a mecha-
nistic study or trying to identify genes
that can be used for sample classif i-
cation, what microarray assays gener-
ally give us are lists of genes that can
be significantly correlated with some
classes in our experiments. These
should be treated not as truths, but as
hypotheses that can be tested.
Second, statistical significance is fine,
but biological signif icance is better.
Statistics provides very powerful tools
for identifying candidate genes, for
prioritizing them in the lack of any
other evidence, and in helping to re-
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solve features in the data. For example,
if 30 of the top 50 genes in a list are
“energy metabolism” genes, a likely
working hypothesis is that the experi-
mental system under study involves
changes in energy metabolism, regard-
less where these 30 fall in the list.
Third, it is very important to note that
any change in how one does the analy-
sis is likely to change what is identi-
fied as significant in any experiment.
This obviously includes changing
microarray platform, but even subtle
changes in the analysis performed on a
single platform can change what is iden-
tif ied as signif icant. Starting from the
laboratory protocols to parameters for
slide scanning, image processing, data
normalization, and the choice of the
analysis tools all contribute significantly
to outcome of any analysis. One way
to approach this problem is to apply
multiple approaches and then look for
a common set of “high conf idence”
genes. Another way that may be more
useful is to look at pathways and func-
tional classes in order to identify com-
mon biological themes that overlie all
of the analyses. It is these functional
classes and pathways that we are ulti-
mately interested in.
Fourth, in conf irming any microarray
result is often useful to use an alter-
native technique to assay gene expres-
sion levels. At this stage, it is useful to
define two approaches – verification
and validation. Verif ication involves
using another technique with the same
RNA samples used for array profiling.
What verif ication does is to confirm
the observed patterns of expression in
the sample set under analysis and ad-
dresses questions related to the bias in
the technique. Validation, on the other
hand, uses independent RNA sources to
assay the individual genes and their
patterns of expression. This can con-
f irm the results independent of biases
in the sample selection and in the choice

of a particular technique. Validation
also includes LKOCV and LOOCV
approaches to classification algorithms.
Validation is a much more powerful
statement than verification.
Finally, all microarrays provide are cor-
relations between a particular pattern
of expression and some biological class.
The real biology is not on the array,
but back in the laboratory. Microarray
experiments can be powerful tools for
developing testable hypotheses, and can
even play a significant role in conduct-
ing such tests. The value of functional
genomics experiments is that they pro-
vide unbiased surveys of large numbers
of genes and this can be extremely
powerful for discovering potential new
mechanisms and new subgroups within
classes. Ultimately, microarrays remain
a tool for discovery, and bioinformatics
is simply a f ilter that can increase the
power of any array experiment.
The one relevant question we might ask
is when, if ever, microarrays will have
an impact on the practice of medicine.
The truth is that their applications, par-
ticularly in the realm of disease classifi-
cation, are already starting to be seen.
One important example comes from the
Netherlands breast cancer study [64],
which sought to distinguish between
patients with the same stage of disease
but different response to treatment and
overall outcome. The study was moti-
vated by the observation that the best
clinical predictors for metastasis, in-
cluding lymph node status and his-
tological grade, did not provide ade-
quate prediction of clinical outcome.
As a result many patients receive
chemotherapy or hormonal therapy
regardless of whether they are likely to
benef it from this additional treatment.
The goal of their analysis was to iden-
tify signatures that would allow for
individually tailored therapeutic strat-
egies. By profiling tumors from 117
young patients and looking for corre-

lations with clinical outcome, they were
able to identify a “poor prognosis” sig-
nature comprised of 70 genes that was
predictive of a short interval to distant
metastasis in lymph node negative pa-
tients. Their analysis demonstrated that
microarray-based signatures could out-
perform any clinically-based predic-
tions of outcome in identifying those
patients who would benef it most from
adjuvant therapy. The success of this
initial study motivated a more exten-
sive independent follow-up study in-
volving 295 patients, 12  of whom
showed that the 70-gene classif ication
prof ile was a more powerful predictor
of the outcome of disease in young pa-
tients with breast cancer than standard
systems based on clinical and histologi-
cal criteria. The success of these two
studies has led to a nation-wide clini-
cal trial in the Netherlands in which
gene expression prof iles for these 70
classifier genes are being collected on
all breast cancer patients and used as
an adjunct to classical clinical staging.
Although we are still eagerly awaiting
the outcome of this study, it is clear
that the use of expression prof iles as
biomarkers to predict disease progno-
sis and outcome is coming of age and
other applications are sure to follow.
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