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how living systems perform difficult tasks routinely (rang-
ing from molecular phenomena such as protein-folding to
organism-level phenomena such as cognition).

The definition of intelligent systems in biology can lead
to hours of debate. Some—the lumpers—say that all high-
performance systems that do something difficult with (or
to) biological data should be considered intelligent systems.
Others—the splitters—insist that the term “intelligent sys-
tem” should be reserved for systems using the methods
typically associated with modern AI. For this article, I will
be a lumper. However, some systems are clearly more intel-
ligent than others. 

An emphasis on molecular biology 
Biology is the study of living systems and how they

work. Using intelligent systems to understand biology can
be applied across many scales, from the atomic details of
biological molecules to the interactions of species in an
ecosystem. The areas that have received the most attention,
however, are those where the data glut is most evident, and
methods are needed immediately to manage this informa-
tion. DNA sequencing technologies were the first to pro-
duce large amounts of data, and they provided the founding
impetus for bioinformatics. Figure 1 in the Guest Editor’s
Introduction on page 9 shows the number of DNA bases in
Genbank, the major DNA database, over the last 20 years.
The human genome contains approximately 3 billion DNA
bases, and a rough draft of this sequence is now available.1,2

More recently, biologists have developed other high-
throughput experimental methods that produce large
amounts of data. These include methods for measuring the
expression of all genes within a population of cells simul-
taneously and quantitatively (using DNA microarrays),
rapidly assessing the ability of biological molecules to

interact with one another (using yeast-two hybrid),
quickly identifying the compounds present in a mixture of
biological molecules (using mass spectroscopy), and
determining the detailed 3D structure of biological mole-
cules (using x-ray crystallography and nuclear magnetic
resonance [NMR] spectroscopy). If you collect a lot of
data, the intelligent systems will come.

Certain key features of biological data make intelligent
systems critical for their analysis.

• Biological data is normally collected with a relatively
low signal-to-noise ratio. This creates a need for robust
analysis methods.

• Biology’s theoretical basis is still in its infancy, so few
“first principle” approaches have any chance of work-
ing yet. This creates a need for statistical and proba-
bilistic models.

• Despite the wealth of biological data, biology is still
relatively knowledge rich and data poor. We know more
about biology in a qualitative sense than a quantitative
one. This creates a need for complex knowledge 
representations.

• Biology (and its associated data sources) operate at
multiple scales that are tightly linked. This creates a
need for cross-scale data integration methods.

• Biological research efforts are distributed, and the asso-
ciated databases focus on particular types of data. This
creates a need for data integration methods.

• Biologists think graphically about their work. This cre-
ates a need for user interfaces and graphical metaphors
for communicating information.

DNA sequence, the master plan
DNA sequence analysis is a primary magnet for attracting

computer professionals into biology, because DNA sequenc-
ing is digital and compatible with decades of work on the
string algorithms. However, DNA sequencing is a false mag-
net, because it is perhaps the only digital information in biol-
ogy, and some computer scientists feel betrayed when they
realize how fuzzy the rest of biology is. Nonetheless, chal-
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lenges in the analysis of DNA sequencing
abound; it is still amazing that a linear
sequence of four characters (ATGC) is suffi-
cient to specify (in the context of some egg
and sperm “initial conditions”) a living
process.

How can we parse a genome to find the
segments of DNA sequence with various
biological roles: encoding proteins and RNA,
and controlling when and where those mole-
cules are expressed? The best methods rely
on work from speech processing and vari-
ous forms of hidden, semi-, and high-order
Markov models.3 How can we align the
sequences in DNA sequences to examine
what is the same and what is different across
the samples? We can ask these questions at a
fine level of detail (aligning individual frag-
ments of the genomes) or broadly across
entire genomes. Alignment methods are
critically important in finding difficult-to-
recognize signals in the sequences that only
emerge in multiple examples. They are used
to compare genomes (and thus, for example,
to understand why things work differently or
the same in mice and humans) or to compare
the control regions of individual genes within
a genome (to understand why sets of genes
are turned on and off in a concerted fashion).
These techniques are usually based on statis-
tical-sampling theory or substring analysis.4

RNA, the message
RNA has a number of biological functions,

but its primary function is to be the working
copy of the gene (made directly from the
DNA) that is then used to synthesize proteins.
The emergence of techniques for measuring
the level of RNA expression for each gene 
in a population of cells promises a high-
resolution understanding of the coordinated
expression of genes over time, as an organism
develops and responds to its environment. 

Biologists are excited about the poten-
tial uses of RNA expression data. Current
challenges include the development of
methods to cluster genes on the basis of
common patterns of expression in the cell,
to classify genes on the basis of supervised
machine learning techniques (when a sub-
set of genes has a known class), and to
reconstruct genetic interactions by trying
to identify coregulated genes that are con-
trolled by common “master” genes.5

The challenge for interpreting this data
is to find reliable gold standards against
which to measure new methods. Clustering
can produce groupings that are reminiscent

of known associations, but this new data is
so comprehensive that it is not clear how to
further validate clusters. So, there is a fair
amount of work in developing internal and
external measures of consistency for the
clusterings. 

Similarly, the task of recreating the con-
trol pathways for turning genes on and off
suffers from the lack of gold standards, as
well as from a relative paucity of data. In
principle, not only can each gene affect
every other gene, but groups of genes can
combine in nonlinear ways to affect other
genes. As investigators attempt to model
the relationships between genes using
Boolean networks, linear models, and non-
linear models, many of these models have
simply too many parameters (compared to
the number of data points) to adequately
constrain the problem. Thus, the relative
data abundance can be misleading, and
requires the use of other sources of data
and knowledge to let us distinguish com-
peting gene control models.

The final challenge in messenger RNA
(mRNA) expression analysis is combining
these data with other data sources, including
the published literature, the sequence and
structure databases, and so on. Single data
sources are most useful in the context of
other, relatively orthogonal sources of data,
where the noise in one dataset offsets the
signal in another. The most exciting work in
this field, therefore, is often combining
expression data with other data sources to
draw new inferences.

Protein, the effector
The expressed mRNA is brought to the

ribosome, where the genetic code is used to
read off the sequence of amino acids that
create a protein.6 The linear string of amino
acids then folds (reliably and reproducibly)
into the 3D protein structure that then can
manifest many biological functions. Protein
structures are responsible for enzymatic
catalysis, structural support, motion, signal
transduction of physical signals (light), cell-
to-cell communication, and many other
functions in the organism. An understanding
of a protein’s 3D structure often yields valu-
able insight about the mechanism and
details of its function. However, the avail-
ability of 3D structures has trailed behind
the availability of DNA sequences (and
RNA expression) because of the great
expense (and chance) involved in experi-
mentally determining 3D structure. 

So, a second major magnet for computa-
tional biology in the last 30 years has been
the Holy Grail of predicting 3D structure
from 1D amino acid sequences. Although
this challenge remains with significant
progress recently—using knowledge-based
approaches combining physical principles
with information from the set of known 3D
structures—it is possible that it will be
mostly of academic interest. The success of
efforts to experimentally determine a large
number of sample 3D structures can be used
as templates for building models of the rest.
Of course, major technical challenges re-
main, ranging from the robotics of large-
scale experimental design to the search for
proper experimental conditions, to tech-
niques for automatically generating the sam-
ples. Structural genomics has great promise
to finally increase the number of 3D struc-
tures available for analysis by at least an
order of magnitude. There are many compu-
tational challenges for protein structure in
intelligent systems, including 

• The analysis of the database of known
structures and the sequence databases
(with mostly unknown structures) to
identify potential high-impact targets for
3D structure determination.

• The prediction of (full or partial) ele-
ments of 3D structure from 1D sequence
information (for example, predicting the
class of protein structure, the location of
secondary structural elements, or the
overall topology), a supervised learning
problem.

• Understanding how biological molecules
interact physically to transfer signals,
including protein–protein and protein–
DNA interactions as well as protein–drug
(or other small-molecule) interactions.
Approaches typically combine physical
principles with empirical models.

• Analyzing 3D structures to find common
structural motifs that can explain func-
tion. These are routinely formulated as
pattern recognition problems.

• Understanding how the 3D structure of
proteins evolved over time and how
related 3D structures in different organ-
isms have adapted to the special needs of
those organisms.

• Designing new proteins to have new or
modified functions for medical or indus-
trial purposes.

• Supporting the analysis of experimental
data, often requiring solutions to combi-
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natorial hypothesis generation problems.

The future of studying intelligent systems
in protein sequence and structure is bright
because of the anticipated increase in avail-
able data. The physical and spatial quality of
these molecules make them good targets for
the application of methods from robotics,
planning, computer-assisted design, image
understanding, and general machine learning.

Pathways and networks
The past few years have witnessed a

notable shift of attention within computa-
tional biology. Efforts previously focused on
the analysis of DNA and protein sequence
(with some 3D structural analysis). Interest
is now increasing in how these molecules
interact to form pathways for metabolic
conversions from one substance to another,
and how genes form networks to regulate
the timing and location of events within the
cell. 

The natural relationship between biologi-
cal network data structures and general
graphs suggests an opportunity to apply the
results from graph theory to biology. The
primary challenge is using experimental
data to deduce the hierarchy of control that
exists between genes and gene products (the
proteins). Promising initial work includes
the use of Bayesian belief networks to infer
genetic regulatory networks.7

The definition of a generally applicable
representation for biological processes is an
important open problem for intelligent sys-
tems. Whereas biological structure is well
defined (usually Cartesian coordinates for
atoms), the concept of function is much
more difficult to capture. First, function
exists at many levels of description (“metab-
olism” is a high-level concept, “glycolysis”
is a medium-level concept, and “add phos-
phate to glucose” is relatively low-level), and
function representations need to be able to
capture these hierarchies. Second, function
has temporal and spatial connections that can
also be difficult to manage. So, functional
descriptions tend to be cognitive structures
useful for biologists when constructing and
evaluating models, and as such they do not
have the sharp edges and crisp definitions of
physical models. The study of biological
pathways and networks expose the inade-
quacy of current approaches and represents
an important driving application for the
development of improved methods. Success
in this area has implications for functional

representations across all scales of biology,
to the organism and ecosystem level.

One important organism:
homo sapiens

The publication of the draft human
genome is clearly one of the magnificent
contributions to science in this century (all of
one year old). The draft contained approxi-
mately 30,000 genes and an even larger
amount of nongene coding, control, and
structural elements. Much of human biology
for the next 20 years will focus on making
sense of this genome and using it to under-
stand biology and improve human health.
Currently, the challenges relate to finishing
the genome’s “final” draft and understanding
the sources and consequences of variation in
the genome. It is quite sobering to look at
three billion bases and realize that a small
percentage variation in these bases explains
all human variation—less than one percent.

For informatics, the challenge is to ana-
lyze the DNA to locate the regions that
code for proteins are and that control the
expression of proteins. There is a sense that
the signals that control human development
and biological function are created with a
combinatorial approach—multiple proteins
that can bind the DNA control regions of
genes exist. Nature mixes and matches
these to create control strategies for over-
lapping (for example, by sharing a subset
of protein control regions). So, we need
methods that can look for weak signals in
the DNA and combine them with external
experimental data sources to define and
recognize these control regions.

The human genome draft provides the
challenge of associating genomic variation
in individuals (their genotype) with the
functional manifestations of this variation
(their phenotype). The area of genotype–
phenotype correlation is active and difficult.
There is much more genetic variation
among humans than is functionally impor-
tant—some variation is just noise. Thus,
there are many false statistical associations
that can be found between variations in the
genome and variations in function. We need
robust methods (most likely, the combina-
tion of statistical and empirical methods)
that can sort through the possible associa-
tions to find the ones that are both statisti-
cally and biologically sensible. At this stage,
the main emphasis is identifying the regions
that vary (one important type of variation is
the single nucleotide polymorphism, or

SNP, which is a single position in the
genome that differs across individuals, usu-
ally by having one of two DNA bases).
Databases have been established to charac-
terize the major types of variation, and the
search for the variations of functional
importance is being undertaken in earnest,
because it might have significant financial
implications to those who discover the
important associations (for defining drug
targets, predicting disease risk, or providing
other prognostic information).

Another important area for genotype–
phenotype studies is pharmacogenomics,
which focuses on how genetic variation
contributes to variation in the response to
drugs. An understanding of how genetic
variations affect the efficacy of drugs, the
levels achieved in the blood, and the occur-
rence of side effects might lead to an ability
to prescribe medications more precisely
and with a much better understanding of a
prescription’s likely outcomes. The Pharm-
GKB resource (www.pharmgkb.org) is an
NIH-funded resource that gathers informa-
tion about pharmacogenomics and makes
tools available for analyzing this data. 

A community of independent,
interacting organisms

Biology has at its roots the study of the
natural living world. Darwin studied birds
and Mendel observed garden peas. Under-
standing the origin and development of
species is an important goal of modern biol-
ogy. With the increasing availability of com-
pletely sequenced genomes, we have an
unprecedented opportunity to compare and
contrast organisms, and to gather a high-
resolution understanding of where they share
elements and where they have diverged or
acquired unrelated genetic elements. The
rough draft of the human genome, for exam-
ple, suggests a number of genes with viral
and bacterial origin that seem to have become
a stable part of the human germ line. Simi-
larly, every organism’s genome will have a
story to tell about that organism’s history—
and the history of individual sets of genes
(how they were acquired, how they have
evolved, and what they do today). A recon-
struction of these histories will provide a pic-
ture of what has happened on earth during the
last four billion years.

In addition to studying the diversity of
species, the availability of multiple genomes
is extremely useful in studying individual
species. By examining the similarities and
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differences between organisms that are
“close” to humans (that is, they diverged
evolutionarily relatively recently) such as
mice, pigs, and monkeys, we can get useful
information about which elements of our
genome are generic to all mammals and
which are particular to humans. Comparative
genomics relies heavily on computational
comparison of genomes and on reasoning
about the resulting differences to understand
the way that particular systems function. 

Ontology design and
maintenance

The creation of methods for defining and
maintaining shared domain models within
biology is critical, particularly representa-
tion of biological function. These techniques
will be important for creating an infrastruc-
ture that is compatible with computational
approaches. Most biological knowledge is
currently stored in natural language text,
representing problems for computational
approaches that require more structured
access to data. The first step in structured
access is a conceptual space and set of
shared vocabularies that allow at least a sub-
set of biological discourse to be written
down formally. The Gene Ontology effort to
create a controlled vocabulary for function
is a first step,8 and efforts to create hierarchi-
cal data models for biological knowledge
bases and to use description logics for
describing the domain are important.

Natural language processing 
As a corollary to the previous discussion

of ontologies, it is also critical to nurture
natural language processing (NLP) tech-
niques in biology. The Medline database
contains abstracts of more than 10,000,000
published articles in biomedical research
(www.ncbi.nlm.nih.gov/PubMed). In addi-
tion, almost all biomedical research journals
are making full text available on the Web.
The creation of controlled vocabularies
(such as the Unified Medical Language Sys-
tem)9 will facilitate the extraction of infor-
mation from these data resources, thereby
facilitating the growth of intelligent systems
within biology. Currently, most NLP work
in biology focuses on extraction of relation-
ships from literature (such as gene–gene
interactions, protein–gene interactions, and
gene–drug interactions for the purpose of
cataloging). There has been intriguing work
in the use of the literature to infer the overall
structure of genetic networks.10

Data mining and intelligent
integration of information 

Biology is fortunate to have a plethora of
useful (distributed) databases. The task of
mining these databases is particularly chal-
lenging because it can require the integra-
tion of generic data mining approaches
with relatively deep biological models. In
addition, there is a problem of poorly
shared semantics across multiple (often
Web-accessible) databases. Failure to accu-
rately integrate biological knowledge into
machine learning algorithms can lead to
both trivial and nonsense inferences that
cause biologists to lose confidence in the
methods. On the other hand, there is clearly
a need for general-purpose methods to gen-
erate exploratory hypotheses, as well as
methods for trying to prove these hypothe-
ses. The marriage of information integra-
tion and the development of ontological
technologies for structured representation
of knowledge will fuel the continued use of
data mining techniques.

Tools for intelligent
visualization and interaction

Biologists think about their work graphi-
cally. The contribution of many papers can
be summarized as a change to a paradigmatic
graphic that summarizes the understanding
of a system.11 A major challenge for intelli-
gent computational systems for biology is
the creation of graphical interfaces that allow
biologists to operate in familiar territory
while giving computational access to these
models. The use of electronic publishing
has also created an opportunity for graphi-
cal display of biological data that is more
dynamic than previously possible in printed
journals and textbooks. 

Emerging trends
Some trends are affecting how intelligent

systems in biology might evolve in the next
decade. Biology has its roots in reduction-
ism. For over a century, biologists have been
trained to take complex phenomena and
break them down into reduced systems that
can be manipulated, controlled, and studied.
This is the basis for biology’s success during
the last 50 years. However, biologists are
realizing that it is necessary to move away
from reductionist approaches and toward
systematic approaches to biology. Some
have even suggested that certain reductionist
paradigms (for instance, about how enzymes
work) have led to results that might be

mostly irrelevant to the actual biological
reality of these systems.12

A shift away from reductionism would
have major consequences for biology. First,
virtually all biologists are trained to work
under the reductionist paradigm, so we
would need a new model for biological work
that is currently not emphasized. Second, the
use of qualitative and quantitative simulation
at a systems level would become increas-
ingly important. Our understanding of a sys-
tem would have to be expressed as our abil-
ity to predict, understand, and manipulate the
integrative phenomena that emerge from
such simulations. Finally, we would have an
opportunity to unify biology from molecular
to ecosystem levels, because a relatively
uniform systems view of biology would let
us consider interacting systems at different
granularities, perhaps with more facility.

Intelligent systems research in biology
has amazing potential. In fact, the annual
meeting for the International Society for
Computational Biology (www.iscb.org) is
the “International Conference on Intelli-
gent Systems for Molecular Biology”
(http://ismb02.org). An important goal is to
harness the enthusiasm in the field to pur-
sue society aims. In particular, one aim is
to nurture the emerging field of computa-
tional biology and bioinformatics within
academic structures, governmental funding
agencies, and foundations. 

The intellectual challenges to informa-
tion and knowledge processing in biology
are exciting and promise to provide prob-
lems that will continue to drive the devel-
opment of improved methods for intelli-
gent systems. As our understanding of
biology increases, the role of intelligent
systems will be not only to assist in creat-
ing new knowledge but also to provide
methods for storing this knowledge. Biol-
ogy’s complexity is too great for the human
mind to track, and written publications
only provide a single projection of knowl-
edge onto paper. The long-term resting
place for our full understanding of biology
will be the intelligent systems we build.
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The Impact of European Bioinformatics
Alfonso Valencia, Protein Design Group

Europe is undergoing a political integration process, the goals
of which are still under discussion. Some countries, such as Ger-
many, France, Italy, Spain, Holland, and Belgium, have coordi-
nated aspects of their economy, including a common currency,
under the administration of the European Commission. Key coun-
tries such as the UK and Denmark are still undecided about their
degree of participation, and others, including most of the former
Eastern-block countries, are actively seeking integration. The EC
has limited power in equilibrium with the European parliament
and national and regional governments. 

Direct funding of the sciences was not included in the EC’s
mandate. It was considered a strategic responsibility of the
national governments. This political concept evolved into new
modes of collaboration between countries and the EC. Bioinfor-
matics could be a key area for these developments, because, if
properly coordinated, it has a great potential for generating added
value to the new genomics and proteomic technology.

Currently, some bioinformatics-related research is funded as net-
works of groups from separate countries, and others are funded as
basic research services, such as databases. For example, the E-Biosci
project, coordinated by the European Molecular Biology Laboratory
as a large research institution, includes the participation of groups
from different countries and one or two medium-sized companies.
Other computational science and telecommunications-related pro-
grams are rarely accessible to the bioinformatics community.

Common scientific projects
Bioinformatics and computational biology were first developed

around structural biology groups, particularly among crystallogra-
phers in London and Cambridge. Part of this tradition is still alive

in Europe, where computational biology is strong in structure clas-
sification, comparison, and databases.

During the early ’90s, large multinational groups in the EMBL,
London, and Cambridge generated considerable scientific activity,
including the support of databases such as SwissProt and EMBL
and the development of the first modeling and threading software.
During these years, the yeast sequencing projects, in which Europe
took the lead, combined the efforts of many small laboratories with
the bioinformatics analysis coordinated by the Munich Information
Center for Protein Sequences. Unfortunately, the project’s success,
in part based on centralized management, did not lead to the cre-
ation of a network of bioinformatic resources. This situation, how-
ever, began to change with the coordination of various bioinfor-
matic groups working on separate genomic projects.

During the late ’90s, bioinformatics branched out to many
smaller centers, thanks to the new technologies available—that is,
faster connections, Web access, distributed databases, and computer
power. Incorporating new groups of computer scientists created a
new focus of activity. Unfortunately, during this period some key
senior scientists left Europe for research positions in the US. The
European efforts shifted significantly toward sequencing smaller
genomes and systematically analyzing organism function. The
Sanger center, and sequencing centers in Germany (the Institute of
Molecular Biotechnology in Jena) and France (the Genoscope and
Centre National de la Recherche Scientifique), were the only Euro-
pean contributors to the sequencing of the human genome. The
associated bioinformatics effort has concentrated exclusively on the
collaboration between the Sanger center and the European Bioinfor-
matics Institute (for example, the Ensembl project).

A clear example of the difficulties of adaptation to the intrinsic
European diversity is the EMBnet organization. Conceived by the
EMBL in the ’80s as a network of repositories of databases and
basic analysis software, it has grown into a worldwide structure,



although it has failed to integrate into the
new European framework by collaborating
with the many emerging scientific groups.  

The EBI is the key for the development
of European bioinformatics. The institute,
founded in 1992 as an outstation of the
EMBL (the largest Europe common re-
search facility in molecular biology), is
maintained with funds provided largely by
the member states of the EMBL and sub-
stantial support from the EC. The institute
inherited the EMBL sequence database, the
collaboration in the construction of Swiss-
prot, and the intention to contribute to the
protein structures. The optimistic view at
that time was that it could be the European
counterpart of the American National Cen-
ter for Biological Informatics. The lack of a
continuous scientific direction, accumu-
lated problems in the recruitment of scien-
tists, difficulties in structuring a network of
collaborations both locally (the Sanger
Center or the Cambridge scientific commu-
nity) and internationally, the lack of a well-
structured European training program, and
budgetary problems of the EMBL head-
quarters have considerably delayed the
EBI’s evolution. Hopefully, the activity of
the new director, whose appointment is
pending, the involvement of the EC in the
future of the institute, and the allocation of
a separate budget inside the EBML will be
solved favorably for the only European
common institute in bioinformatics.

Organization
Germany, the UK, France, Holland, and

Spain have organized networks and associ-
ations on computational biology and bio-
informatics, with annual meetings in their
own national languages (linguistic diversity
is an important part of European culture).
The main organizations in biology, such as
the European Federation of Biochemical
Societies or the European Molecular Biol-
ogy Organization, have paid little attention
to this field. The involvement of European
scientists in the activities of the Interna-
tional Society of Computational Biology,
which has been held in England, Greece,
Germany, and this year Denmark, is posi-
tive. The recent decision of the European
science foundation to launch a five-year
program for functional genomics, with the
aim of mobilizing the research and funding
bodies in associated countries, particularly
in areas related to bioinformatics, is also
positive.

Education 
A few universities, including British and

Swiss, offer master’s degrees at the Euro-
pean level, and many universities have
started their own bioinformatics programs.
Still, efforts to coordinate corresponding
programs have not been successful. Some
of the most relevant efforts to create a com-
mon teaching structure are the ones carried
out by the Universities of Bielefeld and
Stockholm—both participate in the 5-Star
consortium—and the bioinformatics proj-
ect for the definition of standard teaching
topics led by the University of Manchester.

Companies
Small bioinformatics companies are

spreading all over Europe, even in tradi-
tionally less active countries such as Ire-
land and Spain. The particular fragmented
structure of the European economy has
made this process very heterogeneous. Its
success depends on the strength of the local
academic environment, the legal facilities
for knowledge transfer, the possibilities for
scientists to participate in companies, the
availability of private funds, and the exis-
tence of regional plans. A successful exam-
ple of a positive combination of these fac-
tors is Lion Bioscience, a EMBL spin-off,
under the German plan for regional devel-
opment of biotechnology. Lion Bioscence
started in 1997 with an initial capital of
$63,000; it now has a value of more than
$1.34 million.

Strength in diversity 
There’s a lot to learn from the history of

European bioinformatics in the past decade,
particularly its participation in genomics and
proteomics projects. While the massive cost
and equipment involved in these new proj-
ects can be managed in larger centers, Euro-
pean strength resides in its diversity, which is
better served by collaboration between spe-
cialized groups in different institutions and
countries. To face this challenge, the VI
Framework Programme of the European
Commission (2002–2006) will focus not
only on infrastructures but also on fostering
new developments. This will be tackled by
bigger integrated projects closely associated
with networks of excellence, including col-
laboration between programs of different
countries under the EC umbrella. The final
aim would be the creation of what is called
the European Research Area. This ambitious
new concept will face serious questions

about bureaucratic cost, real scientific value,
and consequences in countries that do not
possess large technology centers.

At the time of this writing, the first posi-
tive evidence of the reactivation of European
bioinformatics community has appeared.
The EC has announced direct support (20M
Euros) for a large network of laboratories
around the EBI, including the development
of science and technology on biological
sequence and structure databases, DNA
array repositories, and protein interactions. 
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The Asia-Pacific Regional
Perspective on Bioinformatics
Satoru Miyano, University of Tokyo
Shoba Ranganathan, National University of
Singapore

The Asia-Pacific region spans the Asian
and Australasian continents as well as the
Pacific-rim countries.  As such, the seeds of
bioinformatics in this region have been sown
as early as 1989 in India, followed by Japan
and Australia in 1991.  While bioinformatics
research, service, and education have
reached laudable heights in these countries
as well as in Singapore, Taiwan, Korea,
Malaysia, New Zealand and Russia, several
other countries (Thailand, Indonesia, and the
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Philippines to name three) are making con-
siderable progress.  Following the success
story of Japan, the status of bioinformatics in
the Asia-Pacific region is presented here.

Bioinformatics in Japan
The Japanese bioinformatics project

started in April 1991 as the Genome Infor-
matics Project as the informatics part of the
Japanese Human Genome Project. Minoru
Kanehisa, at Kyoto University, established
a new research area bridging biological
sciences and computer science, and devel-
oped new computational techniques for
genome research. As a result, he success-
fully organized the GenomeNet Service
(www. genome.ad.jp) operated by the
Supercomputer Laboratory of Kyoto Uni-
versity in collaboration with the Human
Genome Center at the University of Tokyo. 

The second stage of the Genome Infor-
matics Project began in April 1996. Data
collection and knowledge organization
were emphasized, but informatics technol-
ogy development also continued. Along
with the intensive sequence productions of
various organisms (starting in 1995 with
Haemophilus influenzae and M. geni-
tarium), the systematic compilation of
information about genes and gene products
of these organisms became a central issue.
KEGG1 (Kyoto Encyclopedia of Genes and
Genomes) is a unique knowledge database
that attempts to computerize knowledge of
molecular and cellular biology in terms of
wiring diagrams of genes and gene prod-
ucts. This project also emphasized develop-
ing techniques for knowledge discovery
from genomic data2 and sequence interpre-
tation.3 New computational methods have
been developed for handling and analyzing
systematic data generated by functional
genomics experiments, such as for predict-
ing networks of interacting genes from
microarray gene expression profiles.4

A forum for researchers, practitioners, and
users working on various aspects of bioinfor-
matics and genome informatics was orga-
nized when the Genome Informatics Project
began. Its aims are to present recent research
results (theory and practice), demonstrate
systems, and explore directions for future
research and new applications. This project
started as a small workshop called the
Genome Informatics Workshop (http://giw.
ims.u-tokyo.ac.jp/giw). GIW 2000 attracted
more than 500 participants, and the peer-
reviewed papers presented there were pub-

lished in Genome Informatics. In 2001,
members changed the workshop’s name to
the International Conference on Genome
Informatics (still keeping GIW as its
acronym).

The Japanese Society for Bioinformat-
ics, a bioinformatics professional society
founded in December 1999, has over 500
members. The papers and posters presented
at GIW are electronically available from
the JSBi Web site (www.jsbi.org).

Recent Japanese government
initiatives

In 2001, the Japanese government
announced the Millennium Project. The
project deals with both the human genome
and the rice genome; the results should con-
tribute to the health and welfare of Japanese
people. Full-length DNA analysis, standard
Single Nucleotide Polymorphisms (http://
snp.ims.u-tokyo.ac.jp), genes related to dis-
eases and drug responsiveness, and bioinfor-
matics technology are all part of this project.
The government has started to introduce
bioinformatics education programs. Pro-
grams are being planned at some universi-
ties in Japan, including the University of
Tokyo. As is similar with most countries,
however, it is hard to find enough researchers
to fulfill this aim of bioinformatics educa-
tion. Many other genome related govern-
ment projects are also sprouting up like
bamboo shoots after the rain.

The future for Japanese bioinformatics 
The Japanese infrastructure for bioinfor-

matics is getting better. The DNA Data-
bank of Japan (DDBJ) at the National Insti-
tute of Genetics has provided a service for
international DNA sequence databases
since 1986. There are three DNA sequence
submission sites: the DDBJ, EMBL, and
GenBank. One-quarter of the DNA col-
lected in 2000 was collected at DDBJ. 

Currently, Japan has a problem with
human resources in bioinformatics—not
enough researchers. But the Japanese govern-
ment is devoting considerable resources that
are geared toward training scientists in this
developing discipline. After bioinformatics
education programs are installed, these uni-
versities must train graduate students to be
better prepared for the growing needs in a
post-genomic era. We hope that this will actu-
ally work. Moreover, judging from the poten-
tial of JSBi and the enthusiasm during GIW
meetings, the Japanese bioinformatics com-

munity might grow soundly with a partner-
ship between academia, industry, and govern-
ment, with the infrastructure constructed by
governmental policy and direction. 

Asia-Pacific Bioinformatics
Scene

The Asia-Pacific Bioinformatics Net-
work (www.apbionet.org), formed in Janu-
ary 1998, started as a nonprofit organization
at the Pacific Symposium of Biocomputing.
It fosters bioinformatics network infrastruc-
ture development, data and information
exchange, training program, workshop, and
symposia development, and collaborations
in the bioinformatics field. Founding mem-
ber countries include Australia, Canada,
China, Japan, Korea, Malaysia, Singapore,
and the US. APBioNet addresses the essen-
tials of bioinformatics as set out by Walter
Gilbert. “We must hook our individual
computers into the worldwide network that
gives us access to daily changes in the data-
bases and also makes immediate our com-
munications with each other,” Gilbert said.
“The programs that display and analyze the
material for us must be improved—and we
must learn to use them more effectively.”5

APBioNet works with network issues (its
collaboration with APAN will link DDBJ,
GenomeNet, HGC, NCC, Angis, and Maf-
fin), hardware, and biological databases (the
Biomirrors project, a joint APAN-APBioNet
initiative providing core biological informa-
tion), software, training, and outreach. Bio-
GRID, a new transregional distributed-
computing project has been launched for
compute-intensive applications.

Since 1998, the membership of APBioNet
has grown and now includes 256 individual
members and 92 organizational members.
Individual and academic institutional mem-
bership continues to remain free and open to
all those interested in bioinformatics. The
2001 Annual General Meeting also resolved
to accept corporate memberships, which will
provide the organization with much-needed
funding for travel fellowships.

Several member countries have taken a
leading role in starting formal bioinformatics
education to meet the growing manpower
requirements both regionally as well as
worldwide. The S* Life Science Informatics
Alliance (www.s-star.org) for global distance
education in bioinformatics includes Singa-
pore and Sydney, Australia from the Asia-
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Pacific region. The National University of
Singapore started its graduate program in
bioinformatics in July 2000. In Japan, a
national committee is actively looking into
initiating formal bioinformatics training
programs. In Australia, several universities
have started undergraduate programs and
courses in bioinformatics and
computational biology, while in New
Zealand, the University of Auckland has
recently started a module in bioinformatics.

APBioNet is working toward active
involvement of the regional bioinformatics
pioneers such as Japan, Australia, and Sin-
gapore to help initiate, sustain, and develop
bioinformatics both within this region as
well as to encourage collaborations with
researchers in Europe, via its partner orga-
nization, the EMBnet as well as in the US
and Canada.

Computational biologists in Africa have
adopted the APBioNet model, and will
soon be initiating the African Bioinformat-
ics Network. 
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