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WI-PHI: A weighted yeast interactome enriched for

direct physical interactions
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How is the yeast proteome wired? This important question, central in yeast systems biology,
remains unanswered in spite of the abundance of protein interaction data from high-throughput
experiments. Unfortunately, these large-scale studies show striking discrepancies in their results
and coverage such that biologists scrutinizing the “interactome” are often confounded by a mix of
established physical interactions, functional associations, and experimental artifacts. This stim-
ulated early attempts to integrate the available information and produce a list of protein interac-
tions ranked according to an estimated functional reliability. The recent publication of the results
of two large protein interaction experiments and the completion of a comprehensive literature
curation effort has more than doubled the available information on the wiring of the yeast pro-
teome. This motivates a fresh approach to the compilation of a yeast interactome based purely on
evidence of physical interaction. We present a procedure exploiting both heuristic and probabil-
istic strategies to draft the yeast interactome taking advantage of various heterogeneous data
sources: application of tandem affinity purification coupled to MS (TAP-MS), large-scale yeast
two-hybrid studies, and results of small-scale experiments stored in dedicated databases. The end
result is WI-PHI, a weighted network encompassing a large majority of yeast proteins.

Received: June 20, 2006
Revised: September 1, 2006

Accepted: September 14, 2006

Keywords:

Interaction network / Interactome / Protein complexes / Protein interaction / Yeast

Proteomics 2007, 7, 0000–0000 1

1 Introduction

Modeling cell physiology requires a thorough and quantita-
tive understanding of the molecular interaction mesh in a
living cell. However, despite technological progress and high-
throughput approaches, we are very far from a satisfactory
description of the equilibrium and kinetic constants govern-
ing the interactions between proteins, proteins and metabo-

lites, or proteins and nucleic acids. Nevertheless, a couple of
recent reports on genome-wide experiments aimed at
describing the complete set of interactions occurring in the
yeast Saccharomyces cerevisiae [1, 2], combined with a com-
prehensive curation of the interaction data published in the
scientific literature [3] have provided us with the best
description ever of the protein interaction network in a living
cell.

More than 50 000 interactions between yeast proteins
have been described in the literature, and a large fraction of
those are now deposited in protein interaction databases
such as BioGRID [4], MINT [5], MPact [6], IntAct [7], and
DIP [8]. It is not uncommon that a database search for
ligands of any of the approximately 6000 yeast proteins
returns a large number of putative interactors, ranging
from a few to hundreds. However, these search outputs are
often difficult to interpret because interactions of biological
significance are intermixed with false positives. On top of
that, direct physical interactions are mixed with indirect or
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functional associations, and interactions leading to the for-
mation of stable complexes are mixed with transient inter-
actions characterized by high dissociation constants. The
main reasons for this heterogeneity are diversity of the
experimental approaches and a high percentage of false
positives in high-throughput experiments. For instance, the
experimental procedure required for affinity purification
allows the discovery of proteins that are stably associated
with the baits, but it does not permit the detection of the
binary direct interactions responsible for the precise topo-
logy of the complex. In contrast, the positive hits of a two-
hybrid approach are enriched for direct interactions, and
transient interactions (dissociation constants in the 10 mM
range) are not uncommon. On the other hand, interactions
discovered by the yeast two-hybrid approach must be con-
firmed by further experimental evidence because of the
inherently high false-positive rate and nonphysiological
experimental settings.

Despite the large number of interactions discovered in
high-throughput experiments, the estimated “interactome”
coverage of each experiment is still rather low. This is best
illustrated by the analysis of the overlap of the results of the
two recently reported high-throughput affinity purification
experiments [1, 2]. Both studies used the tandem affinity
purification (TAP) technology [9] to identify the proteins
copurifying with most of the yeast ORFs, and applied a sta-
tistical analysis to their raw data to end up with two high
confidence interactome cores of similar size (approximately
7000 interactions). However, when the two resulting datasets
are compared, only approximately one-fourth of the interac-
tions are found to be shared by both datasets (Fig. 1). Since
false positives have been pruned away, the most likely con-
clusion is that both datasets are largely incomplete.

It has been shown, however, that by combining the evi-
dence from different experimental approaches, it is possible
to substantially increase the fraction of biologically relevant
interactions [10–12]. Using either heuristic approaches or
more or less sophisticated probabilistic frameworks for data
integration, a number of groups have proposed trustworthy
yeast protein networks. Most of these, however, combine the
information on physical interaction with contextual evidence
based on gene coexpression, protein colocalization, and
genetic interaction [12–15]. The resulting networks provide
strong evidence of functional correlation but do not necessa-
rily reflect true, direct interactions between proteins, and are
biased by a high false-positive rate when used as evidence of
direct physical interactions.

We have been motivated by the recent deluge of fresh
protein interaction information [1–3] to devise an approach
integrating the available information to compile a list of
protein interactions ranked according to a score, which
weighs functional reliability and evidence of direct interac-
tion. Although filtering, by taking into account contextual
evidence and genetic interactions, has been shown to
improve the functional reliability of the network [14, 16, 17],
we deliberately chose to focus on direct physical interactions

Figure 1. Comparison of different protein interaction datasets.
The vertical bars represent the fraction of one dataset that is
present in another one. For clarity, the diagonal is set to 0, al-
though it should be 1. For definition of datasets see Section 2.

without contaminating our network with mere functional
relationships. Contextual filters can be added to our network
if desirable for any specific purpose.

In the absence of accepted positive and negative stand-
ards, a purely probabilistic approach cannot be undertaken
in a straightforward way. For lack of alternatives, however, we
used a probabilistic approach, complemented with some
heuristic intervention to adjust scores favoring interactions
supported by low-throughput studies. Low-throughput stud-
ies are of higher quality because of the manual curation and
labor-intensive postprocessing of the results not feasible in
high-throughput experiments.

The end result is a weighted network of protein interac-
tions with strong emphasis on direct, physical interactions.
Such an interactome is a valuable contribution both for
detailed functional analysis and for the field of interactome
systems biology in yeast.

2 Materials and methods

2.1 Datasets

Seven datasets were assembled for analysis: five high-
throughput datasets, an intermediate-scale dataset, and a
low-throughput dataset. Data originating from publications
reporting interactions between ten or fewer proteins were
considered low-throughput, and data not conforming to this
category but not being high-throughput either (arbitrarily
fixed at more than 1000 interactions) were considered to be
of intermediate scale. Two groups have published more than
one high-throughput dataset [1, 18–20]. In this case, we con-
sidered only the most recent sets, as these are assumed to
include also the data from the first smaller-scale report.
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For both TAP studies [1, 2], raw data are available as
Supporting Information. For yeast two-hybrid data published
by Ito et al. [18] the full Interaction Sequence Tag (IST) set
was used to obtain unfiltered data. The Uetz dataset [21] was
downloaded from BioGRID [4]. The literature-curated physi-
cal interaction (LCPH) dataset was obtained by removing all
the above datasets from a combination of the data down-
loaded from BioGRID 2.0.19, and an interrogation of MINT
[5], BIND [22], IntAct [7], and MPact [6] databases. Addition-
ally, we removed interactions supported by indirect evidence
such as genetic interactions (including “synthetic lethality”,
“synthetic growth defect”, “synthetic rescue”, “phenotypic
enhancement”, “epistatic miniarray profile”, “dosage rescue”,
and “phenotypic suppression”) and colocalization. Interac-
tions inferred from informatic approaches were not con-
sidered. This literature-curated dataset “LCPH” was further
subdivided into low (LCPH-LS) and intermediate scale
(LCPH-IS), composed of interactions discovered in experi-
ments reporting interactions between ten or fewer proteins
and experiments yielding up to 1000 interactions, respec-
tively.

The interactomes or sets of interactions used for network
analysis are: Krogan core [2], “filtered yeast interactome” (FYI)
[13], and Gavin core defined as containing interactions having
a socioaffinity index (SA index) higher than 5, a value pro-
posed by the authors as a confidence threshold [1].

2.2 Generation of a benchmark set for large-scale

datasets

In order to assemble a benchmark for the evaluation of high-
throughput datasets, we collected the 1777 interactions sup-
ported by two independent methods in the small-scale data-
set described in the previous section (LCPH-LS). This set of
interactions is available as Supporting Information. An ad-
ditional benchmark set based on structural information was
compiled from iPfam [23]. This set alone was too small (95
interactions) to be used to benchmark the high-throughput
datasets, but still it represents an important addition to the
interactome (being the only dataset with irrefutable evidence
for direct physical interaction).

2.3 Calculation of SA indices and dataset weights

Applying the SA index as defined by Gavin et al. [1] to all the
datasets mentioned above, except the low-throughput data-
set, allowed us to integrate the data irrespective of the
experimental method.

SA indices were modified by multiplication with a weight
constant depending on the accuracy of the respective set
evaluated on the benchmark set mentioned above. Since the
benchmark set does not describe noninteractions, evaluation
was carried out by counting as noninteractors (negative set)
all possible interactions between the benchmark set minus
the known interactions. This allowed us to calculate a log-

likelihood score (LLS) reflecting how well the individual
datasets describe the benchmark set:

LLS ¼ ln
TP=FP

pos=neg

� �

where, TP and FP are the true positive and false-positive rates
of the dataset in question on covering the benchmark set,
and pos and neg are the fractions of positives and negatives,
respectively, in the benchmark set.

The huge differences in size between the considered
datasets and the lack of a reliable benchmark of noninteract-
ing proteins prevent a calculation of the score from the entire
set. Thus, only interactions obtaining an SA score above a
certain threshold were used for benchmarking. The thresh-
old chosen was the same as that reported by Gavin et al. [1] as
the lower boundary for trustworthy interactions. The follow-
ing log likelihoods were calculated and multiplied by the SA
indices to produce the final score: Gavin 3.66, Krogan 2.38,
Ho 3.59, Ito 3.03, Uetz 3.95, and intermediate scale 4.64. It
should be noted that two datasets are available describing the
Krogan data as the prey detection step was performed with
two different techniques: for interactions described by both
sets, we have chosen to consider them as only one contribu-
tion and combine the scores from the two sets according to
their individual performance on the benchmark set.

Following this step, the resulting scores were summed
for each interaction to produce a final combined interaction
score. The benchmark set, the low-throughput experiments,
and the structurally based datasets were assigned high scores
(20, 20, and 40, respectively) – arbitrarily chosen to make
sure these high confidence interactions are included among
the highest scoring – and added to the network.

2.4 Interactome validation using gene ontology (GO)

and expression profiles

The GO classifications associated with each ORF were
downloaded from SGD [24], and the Biological Process term
was extracted. A Bayesian statistics approach adapted from
Lee et al. [14] was used to validate the interactomes inde-
pendently. This approach produces an LLS reflecting the
degree of enrichment of identical GO terms between the
partners in an interaction. The 50 000 best scoring interac-
tions of WI-PHI were used to calculate prior probabilities.
These 50 000 interactions cover 5951 ORFs of which more
than 90% could be mapped to 569 different GO biological
process terms.

The starting point of the expression analysis was the
dataset provided in a large-scale study of gene expression
[25]. We extracted yeast data and calculated the Pearson cor-
relation coefficient between all pairs of genes. As the data
were only used to validate the WI-PHI approach, a correla-
tion coefficient above 0.5 was considered an indication of
coexpression.
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3 Results

This study consists of four main parts: (i) collecting protein–
protein interaction datasets, (ii) ranking the interactions
within each dataset according to a common scoring method,
(iii) integrating the evidence from the different datasets by
weighting the individual scores with a coefficient reflecting
the performance of each dataset in reproducing the results of
a high confidence interactome used as benchmark, and (iv)
validation and detailed examination of the interactome. The
result is WI-PHI, a weighted yeast interactome of 50 000
interactions that can be filtered according to any desired
confidence threshold.

3.1 Interaction datasets

Our network assembly approach takes advantage of the pub-
lished large-scale interaction datasets and a compilation of
the major protein–protein interaction databases. Two data-
sets are the results of large-scale experimental efforts that
made use of TAP technology [9] combined with affinity pu-
rification and sensitive MS analysis of the copurifying prey
proteins [1, 2]. A third set originates from the MS-based
identification of immunoaffinity purified, overexpressed,
tagged yeast proteins [26]. A large collection of interactions
became available recently, thanks to a formidable curation
effort compiling more than 30 000 yeast genetic and physical
interactions described in the scientific publications [3]. This
dataset, downloaded from the BioGRID website, was com-
bined with our own compilation of the protein–protein
interaction databases BIND [22], MINT [5], MPact [6], IntAct
[7], and DIP [8] and filtered manually to remove high-
throughput experiments already covered, genetic interac-
tions, and colocalization evidence. The resulting dataset
(LCPH) is still rather heterogeneous, since it includes pub-
lished data describing interactions ranging in number from
one to as many as thousands in high-throughput studies.
Since experiments reporting a large number of interactions
are likely to be less reliable than experiments focusing on few
interactions supported by different experimental evidence,
we further subdivided the LCPH dataset into four groups.
The first two include the results of two high-throughput
yeast two hybrid (Y2H) studies, from now on dubbed Ito [18]
and Uetz [21]. The remaining interactions were arbitrarily
subdivided further into two groups: LCPH-LS (low-through-
put scale) consisting of interactions from studies mentioning
ten or fewer proteins and LCPH-IS (intermediate-scale stud-
ies) being interactions from the remaining publications. A
small number of interactions between yeast proteins have
also been characterized by X-ray crystallography, and these
were collected in a separate dataset.

3.2 Interaction rating

As a first step, we conceived a strategy to rate the interactions
within each dataset. High-throughput datasets lend them-

selves to scoring schemes, since statistical analysis of inter-
actions observed at different frequencies in experimental
repetitions can be readily applied. Both Gavin et al. [1] and
Krogan et al. [2] subjected the raw experimental data to such,
albeit different, analyses and, as a consequence, in both
reports the end results are presented as ranked interaction
lists. However, if we compare the scores of the interactions
reported by both groups, the correlation is rather poor (cor-
relation coefficient of 0.13). In order to have a uniform scor-
ing scheme, we decided to apply to all datasets the SA index
scoring system used by Gavin et al. [1] to postprocess their
purification results.

The SA index measures the log-odds of the number of
times two proteins are observed to interact, relative to the
expected value as deduced from their frequency in the data-
set. Since this scoring system takes into account the fre-
quency of proteins within the dataset, it also penalizes inter-
actions involving very promiscuous partners. Interestingly,
Gavin et al. suggest that SA indices (weakly) correlate with
dissociation constants and that interaction subsets having
high SA indices are enriched for direct interactions. Al-
though the SA index was specifically conceived to process the
results of high-throughput pull-down experiments, we chose
to apply this analysis not only to data originating from TAP
experiments [1, 2] but also to data obtained by high-through-
put yeast two-hybrid experiments [18, 21] as well as data from
the intermediate-scale dataset. Our motivation was two-fold:
(1) utilizing a single scoring system to rank interactions
within distinct datasets in order to make them directly com-
parable, and (2) reducing the weight of highly promiscuous
proteins in the final interactome. A comparison of calculated
SA scores for the overlaps between the different datasets
reveals a certain degree of correlation (Pearson correlation
coefficient of 0.7 for Gavin versus Krogan and 0.4 for Uetz
versus Ito or Ito versus Gavin, for example), supporting the
notion that the SA score is dataset independent but compa-
rable.

3.3 Interactome assembly

Next, we devised an integration scheme to combine the
scores obtained by each interaction in the different datasets
in order to assemble a high confidence yeast interactome. To
take into account the different quality of the experimental
datasets under consideration, we first measured the accuracy
with which the individual datasets represented a benchmark
of trustworthy interactions. Since no clearly established
benchmark for protein interaction is available, we assembled
a highly reliable set of 1777 interactions by combining all the
interactions that are supported by more than two independ-
ent types of experiments in LCPH-LT (this benchmark set is
available as Supporting Information). Then, we used the
resulting LLSs to weigh the contribution of each supporting
dataset to the final score. Finally, we incorporated the
benchmark set and the low-throughput interaction set
(LCPH-LT) (see Section 2 for the description of these sets) in
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the resulting interactome by assigning arbitrarily high scores
to the corresponding interactions, thus ensuring that they
would be included in any high confidence interactome. Al-
though more than 700 000 putative interactions have been
ranked by this approach, most of these are low scoring inter-
actions, which are likely to be false positives of no biological
significance. The WI-PHI interactome we consider in the
following includes only the 50 000 best scoring interactions.

3.4 Interactome validation and characterization

The outcome of this study is a prioritized list of yeast protein
interactions, where each interaction is assigned a score
reflecting its support in different datasets and the pro-
miscuity of each of the two proteins. However, the accumu-
lated body of interaction data is enormous and many low-
scoring interactions are dubious, due to the generally high
false-positive rate in protein–protein interaction experiments
[17]. Determination of the exact relationship between the

accumulation of false positives and any chosen score thresh-
old is not trivial. To gain further insights into the relation
between score threshold and network characteristics, we
have examined more closely two different subsets of the WI-
PHI interactome.

(i) WI-PHI core: A high confidence interactome consist-
ing only of interactions whose score is higher than 21. The
score threshold chosen for this trustworthy interactome is
such that even interactions from low-throughput studies can
only be included if supported by another dataset.

(ii) WI-PHI extended: An extended interactome (interac-
tion score higher or equal to 17), including in addition inter-
actions with less experimental support. The threshold for the
extended interactome is such that one third of the interac-
tions supported by intermediate-scale experiments are
included.

The WI-PHI core interactome is visualized with the
VisANT software [27] in Fig. 2. The nodes annotated to a
selection of relevant Munich Information Center for Protein

Figure 2. The WI-PHI core interactome visualized in VisANT [27]. Selected MIPS complexes are highlighted with different colors: Korn-
berg’s mediator (SRB) complex, SAGA complex, TAFIIs, SWI/SNF transcription activator complex, RSC complex (Remodel the structure of
chromatin), RNA polymerase III, 19/22S regulator, Pre-replication complex (pre-RC), Arp2p/Arp3p complex, APC.
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Sequences (MIPS) complexes are highlighted in color to stress
the clustering of the participant proteins in discrete, highly
connected areas of the interactome. The degree distribution of
the network follows a power-law, which is characteristic of
scale-free biological networks (see Fig. 3). However, within the
whole distribution, fewer highly connected nodes are present
than expected in a purely power-law distribution. Consistent

with the observation that highly connected proteins are more
likely to be essential than are proteins with only a small
number of links to other proteins [28], the protein products of
essential genes have, in WI-PHI core, an average degree of
6.93 to be compared with 3.69 for nonessential genes. Fur-
thermore, interactions between essential genes are three
times more enriched than expected on a random base.

Figure 3. WI-PHI network analysis. Panel A illustrates the degree distribution which is the fraction of nodes having a given degree in a
network including the 7000 highest scoring interactions. Visualized in Panel B is the percent coverage of the yeast “ORFome” as a function
of interaction score threshold. It should be noted that not all the predicted ORFs of the yeast genome have been validated. Panel C displays
the number of interactions per protein (only interactions between proteins within the same MIPS complex are considered) as a function of
interaction score. Panel D shows the number of intracomplex interactions per protein (as in panel C) plotted against the number of proteins
that have at least one link with complex comembers. (E, F): Same as C and D but for the complex cores as defined by Gavin et al. [1].
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Figure 4. Dataset support for the
WI-PHI core interactome (A)
consisting of 5299 interactions
and the WI-PHI extended inter-
actome (B) consisting of 9580
interactions. Pie charts repre-
sent the entire set with the upper
number of each slice being the
number of supporting datasets,
and the lower the number of
interactions within that cate-
gory. The bars in the right dia-
gram depict the fraction of
interactions within the inter-
actome supported by each data-
set.

Table 1. Network characterization

Interactomea) Nodes Edges Average
cluster
coefficient

Average
degree

Dia-
meter

WI-PHI core 2406 5244 0.35 5.00 19
WI-PHI extended 2977 9225 0.36 6.64 18
Gavin core 1462 6942 0.53 9.95 12
Krogan core 2708 7123 0.19 5.50 12
Han et al. FYI 1378 2491 0.35 4.62 25

a) Datasets are defined in Section 2. Homodimers were removed
prior to analysis.

As shown in Fig. 4, most of the interactions in the extended as
well as core interactomes are supported by either or both of
the two large affinity purification experiments. However, con-
sistent with our effort to assemble an interactome enriched in
direct binary interactions, a large part of the interactions of
each of the yeast two-hybrid datasets, namely those confirmed
by other supporting evidence, contribute to the two WI-PHI
interactomes, although this is not reflected in Fig. 4, due to
their modest size compared with the affinity purification sets.
Various network properties for the two interactomes are
reported in Table 1 together with the same values for other

interactomes. We found that both the WI-PHI core and
extended interactomes are characterized by properties com-
mon to biological networks: power-law like degree distribu-
tion, high clustering coefficient, and strong small world effect.

As our goal was to produce a yeast interactome enriched
in direct physical connections between proteins, this prop-
erty must be validated in detail. Hard evidence of direct
interaction can be obtained only from crystallographic stud-
ies of interacting proteins. We have considered, as an inde-
pendent validation, a set of 95 interactions whose direct
physical contacts are supported by structural evidence (see
Section 2). This benchmark set is included in WI-PHI but,
for this analysis, we have subtracted its contribution from the
interaction scores. As shown in Table 2, the starting datasets
(considering only the “core” interactions of the TAP sets so
comprising a total of 25 378 interactions) contain supporting
evidence for as many as 92 of the “structurally proven direct
interactions”. Ranking the interactions by our approach and
compiling a network of 5299 interactions (the WI-PHI core
interactome), we still retain supporting evidence for 76
structurally determined interactions, though the network is
less than a fourth of the total size of the starting datasets.
Even considering the limited scope of the benchmark, this is
corroborating evidence for the enrichment of direct interac-
tions in WI-PHI.
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Table 2. Coverage of the structural benchmark by the different
datasets

No. Dataset Dataset
size

Structurally
confirmed
interactions

1 WI-PHI core 5 299 76
2 WI-PHI extended 9 580 79
3 Krogan core 7 123 61
4 Gavin core 6 942 39
5 LCPH-LS 6 514 47
6 LCPH-IS 5 958 63
7 Ito 3 275 6
8 Uetz 1 478 3

3 1 4 1 5 1 6 1 7 1 8 25 378 92

To validate the interactome on a larger scale, we have
adopted the methodology of Lee et al. (Science 2004), which
they used to benchmark individual sets against a common
standard derived from KEGG maps or GO. In this case, we
have used the GO classifications available from SGD, and
specifically looked at the Biological Process category. Most
pairs of interacting proteins can be assumed to participate in
the same biological process, although crosstalk as well as
proteins with multiple functions (so-called “moon-lighting”
proteins) are documented phenomena. Furthermore, due to
the hierarchical nature of the GO, some ORFs may be map-
ped to different layers of the same general biological process
producing dissimilar categories for the participating pro-
teins, but these short-comings should be identical for the
datasets. The analysis has been carried out with several score
thresholds and clearly shows that the higher the WI-PHI
score, the higher the likelihood of the interacting proteins
sharing the same functional category in GO terms (Support-
ing Fig. 8). An increase in the observed frequency of shared
biological process can be interpreted as an enrichment of
true, relevant interactions.

Finally, we have looked at mRNA coexpression for inter-
acting proteins in order to validate our approach. Genes with
similar expression profiles can be assumed to encode pro-
teins with close proximity in interaction space. Thus, coex-
pression can be viewed as corroborating evidence for inter-
action. From a recent compilation of microarray data in sev-
eral species [25], we extracted yeast data and computed
correlation coefficients between all pairs of genes for all
conditions. A clear trend of higher fraction of coexpression
between interacting protein pairs with higher WI-PHI score
was observed (Supporting Fig. 9), further indicating that the
WI-PHI ranking scheme promotes real protein–protein
interactions over false positives ones.

3.5 Coverage of MIPS annotated-complexes dataset

Because of their nature, experiments based on affinity
purification, which represent the vast majority of our

input interactions, tend to yield highly intraconnected
protein complexes. Not all of these interactions represent
direct physical links between the proteins within the
complex. Given that the SA index scoring system tends to
favor direct interactions, and given the contribution to WI-
PHI of interactions supported by methods describing
direct interactions, by selecting an appropriate threshold,
we expect WI-PHI to be enriched in interactions describ-
ing direct physical links. Using the MIPS set of trusted
complexes [29], we monitored the connectivity of these
complexes while adjusting the score threshold. By low-
ering the threshold for accepted scores, we initially add
interactions connecting proteins to their partners in the
complex, but eventually we start accumulating extra, “dis-
pensable” links between proteins already connected within
the complex. This relation is shown in Fig. 3D, which
depicts the average number of interactions for proteins
within MIPS complexes versus the number of proteins
that, at any specific threshold, are connected to one of
their complex comembers. The average number of links
sharply increases at a threshold that connects about 700
MIPS proteins (approximately 65% of the total MIPS
trusted-complex proteins). At this point, the accumulation
of connections within the complexes increases at a much
higher rate than the corresponding gain in new complex
components. The relationship between average number of
links and the score threshold is depicted in Fig. 3C. By
combining the two graphs, one can conclude that, by
choosing a score threshold of about 20, most proteins
assigned to MIPS complexes are connected to one of their
possible partners without unduly increasing the degree of
any complex member. Figures 3E and F show the same
analysis with a different set of complexes as defined by
Gavin et al. [1]. The curves have similar trends supporting
a threshold of 20 for minimum interaction redundancy
within complexes.

Figure 5 shows the coverage of each individual trusted
MIPS complex with the equivalent of the WI-PHI core
interactome (corresponding to a score threshold of above
21). Although most of the complex components are con-
nected by the interactions from our network, the mem-
bers of a few complexes remained largely disconnected.
Most of these annotated complexes, however, describe
associations of functionally connected proteins with
hardly any evidence of direct physical interactions. See,
for instance, the “actin-associated proteins”, the “tubulin-
associated proteins”, and the “other respiration chain”
complexes.

The above analysis indicates that the WI-PHI core sup-
ports a substantial wiring of the MIPS-trusted complexes.
However, WI-PHI core contains additional highly connected
regions. After removing all the proteins annotated to yeast
complexes, we identified 57 protein clusters with k core �3.
Some of these correspond to complexes already annotated in
SGD [30], others have been named according to their com-
mon functional annotation (see Supporting Fig. 7).
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Figure 5. Connectivity of the MIPS-trusted complexes by a WI-PHI interactome with a threshold of 22. Edges are colored according to the
score intervals detailed in the legend. Individual complexes are identified by numbers, which refer to a detailed description provided in the
Supporting Information. Large and small ribosomal subUs are not considered in this analysis.

3.6 Wiring of the anaphase promoting complex (APC)

To further evaluate the robustness of the network on a spe-
cific biological example, and inspect the consequences of
different threshold scores, we have taken a closer look at the
APC. This complex serves as a ubiquitin ligase in the yeast
cell and, although its structure is not known to atomic
details, the basic architecture has been mapped [31]. We
extracted interactions from the interactome in which at least
one of the participants was a member of the yeast APC
according to the MIPS-trusted complexes. From an inter-
actome of 30 000 interactions, 11 proteins are involved in 111
interactions with themselves and 37 other proteins not
annotated as APC members. From our threshold analysis,

we expect most of these proteins and interactions to be false
positives. Correspondingly, when the interactome is reduced
in size, the number of internal interactions and the number
of “attached” proteins drop dramatically (see Fig. 6). The
APC complex is still coherent at even very stringent thresh-
olds, but loses connectivity within its members perhaps
reflecting more the true wiring of the complex. Even at the
most stringent thresholds examined, a few additional pro-
teins remain associated with the complex despite them not
being annotated in MIPS as being members of the APC.
However, a closer scrutiny reveals that two of these proteins
are recognized as constituents of the APC in SGD [30], and
two of the remaining ones have functional descriptions
matching those of APC members (a cyclin, a ubiquitin-con-
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jugating enzyme) indicating at least a functional relationship
with the complex. This analysis of the APC complex wiring at
different stringencies indicates that WI-PHI interactomes
with more than 7000–9000 interactions, some of which are
supported by only one experiment in a single study (score of
18-20), have an increased risk of including false-positive
associations.

4 Discussion

The dynamic modeling of interactions occurring in a cell
requires quantitative information about the direct physical
interactions occurring between any pair of proteins in the
proteome. Despite the vast amount of data published in the
scientific literature, this information is not available in a
structured and organized form. We were motivated by the
recent publication of three large datasets to a fresh approach
to the problem of integrating different types of interaction
information. Our goal was to use the available information to
compile a list of protein pairs ranked according to evidence

of direct physical interaction and functional reliability. Dif-
ferent experimental approaches perform differently in this
respect. A positive hit in the two hybrid method is tradition-
ally considered strong evidence of direct physical interaction.
On the other hand, the high percentage of false positives and
the nonphysiological experimental settings entail caution in
the interpretation of the results in the absence of further
supporting evidence.

In contrast, the affinity purification method addresses
the characterization of complexes that are formed in the cell
and as such are likely to have physiological relevance, but the
technique fails to provide evidence of direct contacts between
the complex members.

To integrate the different datasets we have taken a three-
step approach.

(i) First, we ranked all the interactions within the differ-
ent datasets by calculating the SA indices as initially con-
ceived by Gavin et al. [1] to process their own results.

(ii) Next, for each dataset, we calculated coefficients
reflecting to which extent the interaction sets originating
from the different experimental approaches match a set of

Figure 6. A closer inspection of the APC with varying interaction thresholds. Proteins reported to be part of the complex according to MIPS
were extracted with all possible interactions above a score of seven, corresponding to an interactome of 30 000 interactions. Interactions
are color coded according to interaction scores with darker edges corresponding to higher scores. Nodes representing proteins reported in
MIPS as APC members are colored green, while the remaining nodes are first-order neighbors. For each version of the APC at different
thresholds, the approximate total number of interactions in the corresponding interactome is shown. The interaction graphs were pro-
duced with Cytoscape 2.2 [39].
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1777 highly trusted interactions in terms of coverage and
specificity. We next used these coefficients as multipliers to
combine the scores obtained by calculating the SA indices
for each dataset.

(iii) Finally, we added the interactions detected in small-
scale experiments with a score sufficiently high to make sure
that they would be included within the best scoring 9 000
interactions even in the absence of further supporting evi-
dence.

The end result is a ranked list of 50 000 interactions
annotated with their supporting evidence, which we have
chosen to name WI-PHI. This combined large network has a
proteome coverage of almost 85%. However, even a smaller
high confidence interactome, containing as few as 7500
interactions, connects around 50% of the yeast proteome
(Fig. 3). This reflects an average of approximately 5.6 inter-
actions per protein. The WI-PHI interaction graph proper-
ties are typical for biological networks, namely relatively high
clustering coefficient, small diameter, and enrichment for
interactions among products of essential genes. An interest-
ing observation is that the WI-PHI core and extended net-
works have a lower average clustering coefficient than the
best scoring interactions reported by Gavin et al. This could
indicate that our integration strategy successfully exploits the
complementary information present in the diverse datasets
to preferentially select direct binary interactions, partially
avoiding the problem of overpredicting interactions when
the direct contacts between protein partners are unknown.

WI-PHI, because of its assembly strategy, has an inher-
ently high coverage of a trusted interaction dataset. Further-
more, WI-PHI is enriched in direct interactions. There are a
variety of reasons why our strategy should favor direct inter-
actions. Firstly, the benchmark used to rate the performance
of the different experiments is itself enriched in direct phy-
sical interactions. Secondly, the SA index has been shown by
Gavin et al. to result in an increase in the proportion of direct
interactions among a high scoring subset. Finally, results of
small-scale experiments, which are included among the high
scoring interactions in the WI-PHI network, are also enri-
ched for direct interactions. Our validation strategies also
support enrichment both in terms of shared GO classifica-
tion as well as in terms of direct X-ray crystallography verified
interactions. Despite this enrichment, our analysis suggests
that we do not have sufficient information yet to confidently
map all the direct interactions that are necessary to hold to-
gether the numerous functionally important complexes. Ad-
ditional high confidence interactions require more effort in
the task of mapping direct interactions and in combining
this information with in vivo evidence.

WI-PHI represents an attempt to combine the available
information and present a ranked list of interactions that can
be filtered by progressively increasing the accepted score
threshold. We are rather confident that the WI-PHI core net-
work has a negligible percentage of false positives. By further
lowering the accepted threshold, the risk of introducing false
positives increases accordingly. The majority of false interac-

tions between proteins in networks with a relaxed threshold
are likely caused by indirect interactions which are very com-
mon in the “affinity purification” datasets. While this gives
rise to a seemingly higher interconnectivity within com-
plexes, it does not result in the inclusion of outright false
interactions between completely unrelated proteins.

To further increase confidence in functional significance,
we recommend applying filters based on orthogonal evi-
dence such as coexpression data, colocalization, and other
contextual evidence.

Fundamental limitations of the interactome presented
here include lack of temporal and spatial information. Al-
though integration of interaction data with spatial and tem-
poral evidence has been limited till now by the scarcity of
experimental information and by the development of suit-
able approaches, a number of recent reports describe experi-
mental and computational efforts in this direction [16, 32–
34]. We are confident that this strategy can be applied to
other biological problems and that the interactome presented
here is a good starting point for such an analysis.

Finally, we would like to point out the two most impor-
tant remaining issues limiting our ability to model a dy-
namic interactome. The first one is the absence of informa-
tion on association and dissociation kinetics. The situation is
unlikely to change in the near future and requires the devel-
opment of new high-throughput approaches which can
address this need for kinetic information on interaction data
at least in a semiquantitative way.

The second problem is the lack of information about the
protein domains involved in the specific interactions. As
pointed out in [35], the information represented in protein
network graphs does not permit us to distinguish between a
highly connected hub with the potential to interact simulta-
neously with many partners from one where the many part-
ners compete for a single receptor site. Only a mapping of the
regions responsible for the interactions to domains or inter-
acting surfaces, and a transformation of the protein networks
into domain networks will eventually allow confident model-
ing of the dynamic assembly of functional complexes. Thanks
to recent technological advances and computational approa-
ches, this goal may be within reach in the near future [36–38].

The authors wish to thank Maria Persico for fruitful discus-
sions and Anders Fausbøll for help with figures. This work was
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